Optimal. Leaf size=29 \[ -4+x-\log (x)+\left (1-x-\frac {1}{2} \log \left (\frac {5}{x}-x\right )\right ) \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.45, antiderivative size = 25, normalized size of antiderivative = 0.86, number of steps used = 15, number of rules used = 8, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.157, Rules used = {1593, 6725, 2357, 2295, 2301, 2337, 2391, 2524} \begin {gather*} -\frac {1}{2} \log (x) \log \left (\frac {5-x^2}{x}\right )+x+x (-\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2295
Rule 2301
Rule 2337
Rule 2357
Rule 2391
Rule 2524
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-5+10 x-x^2-2 x^3\right ) \log (x)+\left (5-x^2\right ) \log \left (\frac {5-x^2}{x}\right )}{x \left (-10+2 x^2\right )} \, dx\\ &=\int \left (-\frac {\left (5-10 x+x^2+2 x^3\right ) \log (x)}{2 x \left (-5+x^2\right )}-\frac {\log \left (\frac {5-x^2}{x}\right )}{2 x}\right ) \, dx\\ &=-\left (\frac {1}{2} \int \frac {\left (5-10 x+x^2+2 x^3\right ) \log (x)}{x \left (-5+x^2\right )} \, dx\right )-\frac {1}{2} \int \frac {\log \left (\frac {5-x^2}{x}\right )}{x} \, dx\\ &=-\frac {1}{2} \log (x) \log \left (\frac {5-x^2}{x}\right )+\frac {1}{2} \int \frac {x \left (-2-\frac {5-x^2}{x^2}\right ) \log (x)}{5-x^2} \, dx-\frac {1}{2} \int \left (2 \log (x)-\frac {\log (x)}{x}+\frac {2 x \log (x)}{-5+x^2}\right ) \, dx\\ &=-\frac {1}{2} \log (x) \log \left (\frac {5-x^2}{x}\right )+\frac {1}{2} \int \frac {\log (x)}{x} \, dx+\frac {1}{2} \int \left (-\frac {\log (x)}{x}+\frac {2 x \log (x)}{-5+x^2}\right ) \, dx-\int \log (x) \, dx-\int \frac {x \log (x)}{-5+x^2} \, dx\\ &=x-x \log (x)+\frac {\log ^2(x)}{4}-\frac {1}{2} \log (x) \log \left (\frac {5-x^2}{x}\right )-\frac {1}{2} \log (x) \log \left (1-\frac {x^2}{5}\right )-\frac {1}{2} \int \frac {\log (x)}{x} \, dx+\frac {1}{2} \int \frac {\log \left (1-\frac {x^2}{5}\right )}{x} \, dx+\int \frac {x \log (x)}{-5+x^2} \, dx\\ &=x-x \log (x)-\frac {1}{2} \log (x) \log \left (\frac {5-x^2}{x}\right )-\frac {\text {Li}_2\left (\frac {x^2}{5}\right )}{4}-\frac {1}{2} \int \frac {\log \left (1-\frac {x^2}{5}\right )}{x} \, dx\\ &=x-x \log (x)-\frac {1}{2} \log (x) \log \left (\frac {5-x^2}{x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 29, normalized size = 1.00 \begin {gather*} \frac {1}{2} \left (2 x-2 x \log (x)-\log (x) \log \left (\frac {5-x^2}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 21, normalized size = 0.72 \begin {gather*} -\frac {1}{2} \, {\left (2 \, x + \log \left (-\frac {x^{2} - 5}{x}\right )\right )} \log \relax (x) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 25, normalized size = 0.86 \begin {gather*} -x \log \relax (x) - \frac {1}{2} \, \log \left (-x^{2} + 5\right ) \log \relax (x) + \frac {1}{2} \, \log \relax (x)^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 24, normalized size = 0.83
method | result | size |
default | \(-\frac {\ln \relax (x ) \ln \left (\frac {-x^{2}+5}{x}\right )}{2}-x \ln \relax (x )+x\) | \(24\) |
risch | \(-\frac {\ln \relax (x ) \ln \left (x^{2}-5\right )}{2}+\frac {\ln \relax (x )^{2}}{2}-x \ln \relax (x )+x +\frac {i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i \left (x^{2}-5\right )}{x}\right )^{2}}{2}+\frac {i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x^{2}-5\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-5\right )}{x}\right )}{4}-\frac {i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-5\right )}{x}\right )^{2}}{4}-\frac {i \pi \ln \relax (x ) \mathrm {csgn}\left (i \left (x^{2}-5\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-5\right )}{x}\right )^{2}}{4}-\frac {i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i \left (x^{2}-5\right )}{x}\right )^{3}}{4}-\frac {i \pi \ln \relax (x )}{2}\) | \(160\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 25, normalized size = 0.86 \begin {gather*} -x \log \relax (x) - \frac {1}{2} \, \log \left (-x^{2} + 5\right ) \log \relax (x) + \frac {1}{2} \, \log \relax (x)^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.86, size = 22, normalized size = 0.76 \begin {gather*} x-\frac {\ln \left (-\frac {x^2-5}{x}\right )\,\ln \relax (x)}{2}-x\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 19, normalized size = 0.66 \begin {gather*} - x \log {\relax (x )} + x - \frac {\log {\relax (x )} \log {\left (\frac {5 - x^{2}}{x} \right )}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________