Optimal. Leaf size=32 \[ -\frac {x}{e^{e^x}+x}+x \left (1+\frac {x}{3}+\log (x)\right ) \log \left (\log \left (\frac {\log (x)}{2}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3 x^2+x^3+3 x^2 \log (x)+e^{2 e^x} (3+x+3 \log (x))+e^{e^x} \left (6 x+2 x^2+6 x \log (x)\right )+e^{e^x} \left (-3+3 e^x x\right ) \log (x) \log \left (\frac {\log (x)}{2}\right )+\left (\left (6 x^2+2 x^3\right ) \log (x)+3 x^2 \log ^2(x)+e^{2 e^x} \left ((6+2 x) \log (x)+3 \log ^2(x)\right )+e^{e^x} \left (\left (12 x+4 x^2\right ) \log (x)+6 x \log ^2(x)\right )\right ) \log \left (\frac {\log (x)}{2}\right ) \log \left (\log \left (\frac {\log (x)}{2}\right )\right )}{\left (3 e^{2 e^x} \log (x)+6 e^{e^x} x \log (x)+3 x^2 \log (x)\right ) \log \left (\frac {\log (x)}{2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1}{3} \left (\frac {3 e^{e^x} \left (-1+e^x x\right )}{\left (e^{e^x}+x\right )^2}+\frac {3+x+3 \log (x)}{\log (x) \log \left (\frac {\log (x)}{2}\right )}+(6+2 x+3 \log (x)) \log \left (\log \left (\frac {\log (x)}{2}\right )\right )\right ) \, dx\\ &=\frac {1}{3} \int \left (\frac {3 e^{e^x} \left (-1+e^x x\right )}{\left (e^{e^x}+x\right )^2}+\frac {3+x+3 \log (x)}{\log (x) \log \left (\frac {\log (x)}{2}\right )}+(6+2 x+3 \log (x)) \log \left (\log \left (\frac {\log (x)}{2}\right )\right )\right ) \, dx\\ &=\frac {1}{3} \int \frac {3+x+3 \log (x)}{\log (x) \log \left (\frac {\log (x)}{2}\right )} \, dx+\frac {1}{3} \int (6+2 x+3 \log (x)) \log \left (\log \left (\frac {\log (x)}{2}\right )\right ) \, dx+\int \frac {e^{e^x} \left (-1+e^x x\right )}{\left (e^{e^x}+x\right )^2} \, dx\\ &=\frac {1}{3} \int \left (\frac {3}{\log \left (\frac {\log (x)}{2}\right )}+\frac {3}{\log (x) \log \left (\frac {\log (x)}{2}\right )}+\frac {x}{\log (x) \log \left (\frac {\log (x)}{2}\right )}\right ) \, dx+\frac {1}{3} \int \left (6 \log \left (\log \left (\frac {\log (x)}{2}\right )\right )+2 x \log \left (\log \left (\frac {\log (x)}{2}\right )\right )+3 \log (x) \log \left (\log \left (\frac {\log (x)}{2}\right )\right )\right ) \, dx+\operatorname {Subst}\left (\int \frac {1}{(1+x)^2} \, dx,x,\frac {e^{e^x}}{x}\right )\\ &=-\frac {1}{1+\frac {e^{e^x}}{x}}+\frac {1}{3} \int \frac {x}{\log (x) \log \left (\frac {\log (x)}{2}\right )} \, dx+\frac {2}{3} \int x \log \left (\log \left (\frac {\log (x)}{2}\right )\right ) \, dx+2 \int \log \left (\log \left (\frac {\log (x)}{2}\right )\right ) \, dx+\int \frac {1}{\log \left (\frac {\log (x)}{2}\right )} \, dx+\int \frac {1}{\log (x) \log \left (\frac {\log (x)}{2}\right )} \, dx+\int \log (x) \log \left (\log \left (\frac {\log (x)}{2}\right )\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.52, size = 34, normalized size = 1.06 \begin {gather*} \frac {1}{3} \left (-\frac {3 x}{e^{e^x}+x}+x (3+x+3 \log (x)) \log \left (\log \left (\frac {\log (x)}{2}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.35, size = 52, normalized size = 1.62 \begin {gather*} \frac {{\left (x^{3} + 3 \, x^{2} \log \relax (x) + 3 \, x^{2} + {\left (x^{2} + 3 \, x \log \relax (x) + 3 \, x\right )} e^{\left (e^{x}\right )}\right )} \log \left (\log \left (\frac {1}{2} \, \log \relax (x)\right )\right ) - 3 \, x}{3 \, {\left (x + e^{\left (e^{x}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 30, normalized size = 0.94
method | result | size |
risch | \(\left (x \ln \relax (x )+\frac {x^{2}}{3}+x \right ) \ln \left (\ln \left (\frac {\ln \relax (x )}{2}\right )\right )-\frac {x}{x +{\mathrm e}^{{\mathrm e}^{x}}}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.52, size = 55, normalized size = 1.72 \begin {gather*} \frac {{\left (x^{3} + 3 \, x^{2} \log \relax (x) + 3 \, x^{2} + {\left (x^{2} + 3 \, x \log \relax (x) + 3 \, x\right )} e^{\left (e^{x}\right )}\right )} \log \left (-\log \relax (2) + \log \left (\log \relax (x)\right )\right ) - 3 \, x}{3 \, {\left (x + e^{\left (e^{x}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.17, size = 40, normalized size = 1.25 \begin {gather*} \ln \left (\ln \left (\frac {\ln \relax (x)}{2}\right )\right )\,\left (\frac {x^3+6\,x^2}{3\,x}-x+x\,\ln \relax (x)\right )-\frac {x}{x+{\mathrm {e}}^{{\mathrm {e}}^x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.21, size = 27, normalized size = 0.84 \begin {gather*} - \frac {x}{x + e^{e^{x}}} + \left (\frac {x^{2}}{3} + x \log {\relax (x )} + x\right ) \log {\left (\log {\left (\frac {\log {\relax (x )}}{2} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________