Optimal. Leaf size=25 \[ -2+3 e^3-e^{x^2}+x^2+\log \left (e^x x^4\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 16, normalized size of antiderivative = 0.64, number of steps used = 5, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {14, 2209} \begin {gather*} x^2-e^{x^2}+x+4 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2209
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-2 e^{x^2} x+\frac {4+x+2 x^2}{x}\right ) \, dx\\ &=-\left (2 \int e^{x^2} x \, dx\right )+\int \frac {4+x+2 x^2}{x} \, dx\\ &=-e^{x^2}+\int \left (1+\frac {4}{x}+2 x\right ) \, dx\\ &=-e^{x^2}+x+x^2+4 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 0.64 \begin {gather*} -e^{x^2}+x+x^2+4 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 15, normalized size = 0.60 \begin {gather*} x^{2} + x - e^{\left (x^{2}\right )} + 4 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 3.82, size = 15, normalized size = 0.60 \begin {gather*} x^{2} + x - e^{\left (x^{2}\right )} + 4 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 16, normalized size = 0.64
method | result | size |
default | \(x^{2}+x +4 \ln \relax (x )-{\mathrm e}^{x^{2}}\) | \(16\) |
norman | \(x^{2}+x +4 \ln \relax (x )-{\mathrm e}^{x^{2}}\) | \(16\) |
risch | \(x^{2}+x +4 \ln \relax (x )-{\mathrm e}^{x^{2}}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 15, normalized size = 0.60 \begin {gather*} x^{2} + x - e^{\left (x^{2}\right )} + 4 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 15, normalized size = 0.60 \begin {gather*} x-{\mathrm {e}}^{x^2}+4\,\ln \relax (x)+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 14, normalized size = 0.56 \begin {gather*} x^{2} + x - e^{x^{2}} + 4 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________