Optimal. Leaf size=21 \[ 2+\frac {1+x^2}{\log \left (2 e^{-4+\log ^2(2)}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 19, normalized size of antiderivative = 0.90, number of steps used = 2, number of rules used = 2, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {12, 30} \begin {gather*} -\frac {x^2}{4-\log ^2(2)-\log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {2 \int x \, dx}{4-\log (2)-\log ^2(2)}\\ &=-\frac {x^2}{4-\log (2)-\log ^2(2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 17, normalized size = 0.81 \begin {gather*} \frac {x^2}{\log \left (2 e^{-4+\log ^2(2)}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 14, normalized size = 0.67 \begin {gather*} \frac {x^{2}}{\log \relax (2)^{2} + \log \relax (2) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.60, size = 16, normalized size = 0.76 \begin {gather*} \frac {x^{2}}{\log \left (2 \, e^{\left (\log \relax (2)^{2} - 4\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 15, normalized size = 0.71
method | result | size |
norman | \(\frac {x^{2}}{\ln \relax (2)+\ln \relax (2)^{2}-4}\) | \(15\) |
risch | \(\frac {x^{2}}{\ln \relax (2)+\ln \relax (2)^{2}-4}\) | \(15\) |
gosper | \(\frac {x^{2}}{\ln \left (2 \,{\mathrm e}^{\ln \relax (2)^{2}-4}\right )}\) | \(17\) |
default | \(\frac {x^{2}}{\ln \left (2 \,{\mathrm e}^{\ln \relax (2)^{2}-4}\right )}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 16, normalized size = 0.76 \begin {gather*} \frac {x^{2}}{\log \left (2 \, e^{\left (\log \relax (2)^{2} - 4\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 14, normalized size = 0.67 \begin {gather*} \frac {x^2}{\ln \relax (2)+{\ln \relax (2)}^2-4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 12, normalized size = 0.57 \begin {gather*} \frac {x^{2}}{-4 + \log {\relax (2 )}^{2} + \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________