Optimal. Leaf size=33 \[ \frac {3 \left (\frac {2 \left (e^2+x\right )}{\log (x)}-\frac {\left (5+e^{e^x}\right ) \log (3+x)}{x}\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 6.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-18 x^2-6 x^3+e^2 \left (-18 x-6 x^2\right )+e^2 \left (-18 x-6 x^2\right ) \log (x)-15 x \log ^2(x)+(90+30 x) \log ^2(x) \log (3+x)+e^{e^x} \left (-3 x \log ^2(x)+\left (18+6 x+e^x \left (-9 x-3 x^2\right )\right ) \log ^2(x) \log (3+x)\right )}{\left (3 x^3+x^4\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-18 x^2-6 x^3+e^2 \left (-18 x-6 x^2\right )+e^2 \left (-18 x-6 x^2\right ) \log (x)-15 x \log ^2(x)+(90+30 x) \log ^2(x) \log (3+x)+e^{e^x} \left (-3 x \log ^2(x)+\left (18+6 x+e^x \left (-9 x-3 x^2\right )\right ) \log ^2(x) \log (3+x)\right )}{x^3 (3+x) \log ^2(x)} \, dx\\ &=\int \frac {3 \left (-2 x (3+x) \left (e^2+x\right )-2 e^2 x (3+x) \log (x)-\log ^2(x) \left (\left (5+e^{e^x}\right ) x+(3+x) \left (-10-2 e^{e^x}+e^{e^x+x} x\right ) \log (3+x)\right )\right )}{x^3 (3+x) \log ^2(x)} \, dx\\ &=3 \int \frac {-2 x (3+x) \left (e^2+x\right )-2 e^2 x (3+x) \log (x)-\log ^2(x) \left (\left (5+e^{e^x}\right ) x+(3+x) \left (-10-2 e^{e^x}+e^{e^x+x} x\right ) \log (3+x)\right )}{x^3 (3+x) \log ^2(x)} \, dx\\ &=3 \int \left (-\frac {e^{e^x+x} \log (3+x)}{x^2}+\frac {-6 e^2 x-6 \left (1+\frac {e^2}{3}\right ) x^2-2 x^3-6 e^2 x \log (x)-2 e^2 x^2 \log (x)-5 x \log ^2(x)-e^{e^x} x \log ^2(x)+30 \log ^2(x) \log (3+x)+6 e^{e^x} \log ^2(x) \log (3+x)+10 x \log ^2(x) \log (3+x)+2 e^{e^x} x \log ^2(x) \log (3+x)}{x^3 (3+x) \log ^2(x)}\right ) \, dx\\ &=-\left (3 \int \frac {e^{e^x+x} \log (3+x)}{x^2} \, dx\right )+3 \int \frac {-6 e^2 x-6 \left (1+\frac {e^2}{3}\right ) x^2-2 x^3-6 e^2 x \log (x)-2 e^2 x^2 \log (x)-5 x \log ^2(x)-e^{e^x} x \log ^2(x)+30 \log ^2(x) \log (3+x)+6 e^{e^x} \log ^2(x) \log (3+x)+10 x \log ^2(x) \log (3+x)+2 e^{e^x} x \log ^2(x) \log (3+x)}{x^3 (3+x) \log ^2(x)} \, dx\\ &=3 \int \frac {-\frac {2 x \left (e^2+x\right )}{\log ^2(x)}-\frac {2 e^2 x}{\log (x)}+\frac {\left (5+e^{e^x}\right ) (-x+2 (3+x) \log (3+x))}{3+x}}{x^3} \, dx+3 \int \frac {\int \frac {e^{e^x+x}}{x^2} \, dx}{3+x} \, dx-(3 \log (3+x)) \int \frac {e^{e^x+x}}{x^2} \, dx\\ &=3 \int \left (\frac {e^{e^x} (-x+6 \log (3+x)+2 x \log (3+x))}{x^3 (3+x)}+\frac {-6 e^2 x-6 \left (1+\frac {e^2}{3}\right ) x^2-2 x^3-6 e^2 x \log (x)-2 e^2 x^2 \log (x)-5 x \log ^2(x)+30 \log ^2(x) \log (3+x)+10 x \log ^2(x) \log (3+x)}{x^3 (3+x) \log ^2(x)}\right ) \, dx+3 \int \frac {\int \frac {e^{e^x+x}}{x^2} \, dx}{3+x} \, dx-(3 \log (3+x)) \int \frac {e^{e^x+x}}{x^2} \, dx\\ &=3 \int \frac {e^{e^x} (-x+6 \log (3+x)+2 x \log (3+x))}{x^3 (3+x)} \, dx+3 \int \frac {-6 e^2 x-6 \left (1+\frac {e^2}{3}\right ) x^2-2 x^3-6 e^2 x \log (x)-2 e^2 x^2 \log (x)-5 x \log ^2(x)+30 \log ^2(x) \log (3+x)+10 x \log ^2(x) \log (3+x)}{x^3 (3+x) \log ^2(x)} \, dx+3 \int \frac {\int \frac {e^{e^x+x}}{x^2} \, dx}{3+x} \, dx-(3 \log (3+x)) \int \frac {e^{e^x+x}}{x^2} \, dx\\ &=3 \int \frac {-\frac {5 x}{3+x}-\frac {2 x \left (e^2+x\right )}{\log ^2(x)}-\frac {2 e^2 x}{\log (x)}+10 \log (3+x)}{x^3} \, dx+3 \int \left (-\frac {e^{e^x}}{x^2 (3+x)}+\frac {2 e^{e^x} \log (3+x)}{x^3}\right ) \, dx+3 \int \frac {\int \frac {e^{e^x+x}}{x^2} \, dx}{3+x} \, dx-(3 \log (3+x)) \int \frac {e^{e^x+x}}{x^2} \, dx\\ &=-\left (3 \int \frac {e^{e^x}}{x^2 (3+x)} \, dx\right )+3 \int \left (\frac {-6 e^2-6 \left (1+\frac {e^2}{3}\right ) x-2 x^2-6 e^2 \log (x)-2 e^2 x \log (x)-5 \log ^2(x)}{x^2 (3+x) \log ^2(x)}+\frac {10 \log (3+x)}{x^3}\right ) \, dx+3 \int \frac {\int \frac {e^{e^x+x}}{x^2} \, dx}{3+x} \, dx+6 \int \frac {e^{e^x} \log (3+x)}{x^3} \, dx-(3 \log (3+x)) \int \frac {e^{e^x+x}}{x^2} \, dx\\ &=-\left (3 \int \left (\frac {e^{e^x}}{3 x^2}-\frac {e^{e^x}}{9 x}+\frac {e^{e^x}}{9 (3+x)}\right ) \, dx\right )+3 \int \frac {-6 e^2-6 \left (1+\frac {e^2}{3}\right ) x-2 x^2-6 e^2 \log (x)-2 e^2 x \log (x)-5 \log ^2(x)}{x^2 (3+x) \log ^2(x)} \, dx+3 \int \frac {\int \frac {e^{e^x+x}}{x^2} \, dx}{3+x} \, dx-6 \int \frac {\int \frac {e^{e^x}}{x^3} \, dx}{3+x} \, dx+30 \int \frac {\log (3+x)}{x^3} \, dx-(3 \log (3+x)) \int \frac {e^{e^x+x}}{x^2} \, dx+(6 \log (3+x)) \int \frac {e^{e^x}}{x^3} \, dx\\ &=-\frac {15 \log (3+x)}{x^2}+\frac {1}{3} \int \frac {e^{e^x}}{x} \, dx-\frac {1}{3} \int \frac {e^{e^x}}{3+x} \, dx+3 \int \frac {-2 (3+x) \left (e^2+x\right )-2 e^2 (3+x) \log (x)-5 \log ^2(x)}{x^2 (3+x) \log ^2(x)} \, dx+3 \int \frac {\int \frac {e^{e^x+x}}{x^2} \, dx}{3+x} \, dx-6 \int \frac {\int \frac {e^{e^x}}{x^3} \, dx}{3+x} \, dx+15 \int \frac {1}{x^2 (3+x)} \, dx-(3 \log (3+x)) \int \frac {e^{e^x+x}}{x^2} \, dx+(6 \log (3+x)) \int \frac {e^{e^x}}{x^3} \, dx-\int \frac {e^{e^x}}{x^2} \, dx\\ &=-\frac {15 \log (3+x)}{x^2}+\frac {1}{3} \int \frac {e^{e^x}}{x} \, dx-\frac {1}{3} \int \frac {e^{e^x}}{3+x} \, dx+3 \int \left (-\frac {5}{x^2 (3+x)}-\frac {2 \left (e^2+x\right )}{x^2 \log ^2(x)}-\frac {2 e^2}{x^2 \log (x)}\right ) \, dx+3 \int \frac {\int \frac {e^{e^x+x}}{x^2} \, dx}{3+x} \, dx-6 \int \frac {\int \frac {e^{e^x}}{x^3} \, dx}{3+x} \, dx+15 \int \left (\frac {1}{3 x^2}-\frac {1}{9 x}+\frac {1}{9 (3+x)}\right ) \, dx-(3 \log (3+x)) \int \frac {e^{e^x+x}}{x^2} \, dx+(6 \log (3+x)) \int \frac {e^{e^x}}{x^3} \, dx-\int \frac {e^{e^x}}{x^2} \, dx\\ &=-\frac {5}{x}-\frac {5 \log (x)}{3}+\frac {5}{3} \log (3+x)-\frac {15 \log (3+x)}{x^2}+\frac {1}{3} \int \frac {e^{e^x}}{x} \, dx-\frac {1}{3} \int \frac {e^{e^x}}{3+x} \, dx+3 \int \frac {\int \frac {e^{e^x+x}}{x^2} \, dx}{3+x} \, dx-6 \int \frac {e^2+x}{x^2 \log ^2(x)} \, dx-6 \int \frac {\int \frac {e^{e^x}}{x^3} \, dx}{3+x} \, dx-15 \int \frac {1}{x^2 (3+x)} \, dx-\left (6 e^2\right ) \int \frac {1}{x^2 \log (x)} \, dx-(3 \log (3+x)) \int \frac {e^{e^x+x}}{x^2} \, dx+(6 \log (3+x)) \int \frac {e^{e^x}}{x^3} \, dx-\int \frac {e^{e^x}}{x^2} \, dx\\ &=-\frac {5}{x}-\frac {5 \log (x)}{3}+\frac {5}{3} \log (3+x)-\frac {15 \log (3+x)}{x^2}+\frac {1}{3} \int \frac {e^{e^x}}{x} \, dx-\frac {1}{3} \int \frac {e^{e^x}}{3+x} \, dx+3 \int \frac {\int \frac {e^{e^x+x}}{x^2} \, dx}{3+x} \, dx-6 \int \left (\frac {e^2}{x^2 \log ^2(x)}+\frac {1}{x \log ^2(x)}\right ) \, dx-6 \int \frac {\int \frac {e^{e^x}}{x^3} \, dx}{3+x} \, dx-15 \int \left (\frac {1}{3 x^2}-\frac {1}{9 x}+\frac {1}{9 (3+x)}\right ) \, dx-\left (6 e^2\right ) \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )-(3 \log (3+x)) \int \frac {e^{e^x+x}}{x^2} \, dx+(6 \log (3+x)) \int \frac {e^{e^x}}{x^3} \, dx-\int \frac {e^{e^x}}{x^2} \, dx\\ &=-6 e^2 \text {Ei}(-\log (x))-\frac {15 \log (3+x)}{x^2}+\frac {1}{3} \int \frac {e^{e^x}}{x} \, dx-\frac {1}{3} \int \frac {e^{e^x}}{3+x} \, dx+3 \int \frac {\int \frac {e^{e^x+x}}{x^2} \, dx}{3+x} \, dx-6 \int \frac {1}{x \log ^2(x)} \, dx-6 \int \frac {\int \frac {e^{e^x}}{x^3} \, dx}{3+x} \, dx-\left (6 e^2\right ) \int \frac {1}{x^2 \log ^2(x)} \, dx-(3 \log (3+x)) \int \frac {e^{e^x+x}}{x^2} \, dx+(6 \log (3+x)) \int \frac {e^{e^x}}{x^3} \, dx-\int \frac {e^{e^x}}{x^2} \, dx\\ &=-6 e^2 \text {Ei}(-\log (x))+\frac {6 e^2}{x \log (x)}-\frac {15 \log (3+x)}{x^2}+\frac {1}{3} \int \frac {e^{e^x}}{x} \, dx-\frac {1}{3} \int \frac {e^{e^x}}{3+x} \, dx+3 \int \frac {\int \frac {e^{e^x+x}}{x^2} \, dx}{3+x} \, dx-6 \int \frac {\int \frac {e^{e^x}}{x^3} \, dx}{3+x} \, dx-6 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (x)\right )+\left (6 e^2\right ) \int \frac {1}{x^2 \log (x)} \, dx-(3 \log (3+x)) \int \frac {e^{e^x+x}}{x^2} \, dx+(6 \log (3+x)) \int \frac {e^{e^x}}{x^3} \, dx-\int \frac {e^{e^x}}{x^2} \, dx\\ &=-6 e^2 \text {Ei}(-\log (x))+\frac {6}{\log (x)}+\frac {6 e^2}{x \log (x)}-\frac {15 \log (3+x)}{x^2}+\frac {1}{3} \int \frac {e^{e^x}}{x} \, dx-\frac {1}{3} \int \frac {e^{e^x}}{3+x} \, dx+3 \int \frac {\int \frac {e^{e^x+x}}{x^2} \, dx}{3+x} \, dx-6 \int \frac {\int \frac {e^{e^x}}{x^3} \, dx}{3+x} \, dx+\left (6 e^2\right ) \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )-(3 \log (3+x)) \int \frac {e^{e^x+x}}{x^2} \, dx+(6 \log (3+x)) \int \frac {e^{e^x}}{x^3} \, dx-\int \frac {e^{e^x}}{x^2} \, dx\\ &=\frac {6}{\log (x)}+\frac {6 e^2}{x \log (x)}-\frac {15 \log (3+x)}{x^2}+\frac {1}{3} \int \frac {e^{e^x}}{x} \, dx-\frac {1}{3} \int \frac {e^{e^x}}{3+x} \, dx+3 \int \frac {\int \frac {e^{e^x+x}}{x^2} \, dx}{3+x} \, dx-6 \int \frac {\int \frac {e^{e^x}}{x^3} \, dx}{3+x} \, dx-(3 \log (3+x)) \int \frac {e^{e^x+x}}{x^2} \, dx+(6 \log (3+x)) \int \frac {e^{e^x}}{x^3} \, dx-\int \frac {e^{e^x}}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.69, size = 32, normalized size = 0.97 \begin {gather*} -\frac {3 \left (-2 x \left (e^2+x\right )+\left (5+e^{e^x}\right ) \log (x) \log (3+x)\right )}{x^2 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 38, normalized size = 1.15 \begin {gather*} -\frac {3 \, {\left (e^{\left (e^{x}\right )} \log \left (x + 3\right ) \log \relax (x) - 2 \, x^{2} - 2 \, x e^{2} + 5 \, \log \left (x + 3\right ) \log \relax (x)\right )}}{x^{2} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {3 \, {\left (10 \, {\left (x + 3\right )} \log \left (x + 3\right ) \log \relax (x)^{2} - 2 \, x^{3} - 2 \, {\left (x^{2} + 3 \, x\right )} e^{2} \log \relax (x) - 5 \, x \log \relax (x)^{2} - 6 \, x^{2} - 2 \, {\left (x^{2} + 3 \, x\right )} e^{2} - {\left ({\left ({\left (x^{2} + 3 \, x\right )} e^{x} - 2 \, x - 6\right )} \log \left (x + 3\right ) \log \relax (x)^{2} + x \log \relax (x)^{2}\right )} e^{\left (e^{x}\right )}\right )}}{{\left (x^{4} + 3 \, x^{3}\right )} \log \relax (x)^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 36, normalized size = 1.09
method | result | size |
risch | \(-\frac {15 \ln \left (3+x \right )}{x^{2}}+\frac {6 x +6 \,{\mathrm e}^{2}}{x \ln \relax (x )}-\frac {3 \ln \left (3+x \right ) {\mathrm e}^{{\mathrm e}^{x}}}{x^{2}}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 38, normalized size = 1.15 \begin {gather*} -\frac {3 \, {\left (e^{\left (e^{x}\right )} \log \left (x + 3\right ) \log \relax (x) - 2 \, x^{2} - 2 \, x e^{2} + 5 \, \log \left (x + 3\right ) \log \relax (x)\right )}}{x^{2} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {15\,x\,{\ln \relax (x)}^2+{\mathrm {e}}^2\,\left (6\,x^2+18\,x\right )+18\,x^2+6\,x^3+{\mathrm {e}}^{{\mathrm {e}}^x}\,\left (3\,x\,{\ln \relax (x)}^2-\ln \left (x+3\right )\,{\ln \relax (x)}^2\,\left (6\,x-{\mathrm {e}}^x\,\left (3\,x^2+9\,x\right )+18\right )\right )+{\mathrm {e}}^2\,\ln \relax (x)\,\left (6\,x^2+18\,x\right )-\ln \left (x+3\right )\,{\ln \relax (x)}^2\,\left (30\,x+90\right )}{{\ln \relax (x)}^2\,\left (x^4+3\,x^3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.64, size = 37, normalized size = 1.12 \begin {gather*} \frac {6 x + 6 e^{2}}{x \log {\relax (x )}} - \frac {3 e^{e^{x}} \log {\left (x + 3 \right )}}{x^{2}} - \frac {15 \log {\left (x + 3 \right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________