Optimal. Leaf size=30 \[ 2 x+e^4 \left (e^{4/3}+x\right )-4 \left (e^{4/x}-x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 22, normalized size of antiderivative = 0.73, number of steps used = 4, number of rules used = 3, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {6, 14, 2209} \begin {gather*} 4 x^2+\left (2+e^4\right ) x-4 e^{4/x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 14
Rule 2209
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {16 e^{4/x}+\left (2+e^4\right ) x^2+8 x^3}{x^2} \, dx\\ &=\int \left (2 \left (1+\frac {e^4}{2}\right )+\frac {16 e^{4/x}}{x^2}+8 x\right ) \, dx\\ &=\left (2+e^4\right ) x+4 x^2+16 \int \frac {e^{4/x}}{x^2} \, dx\\ &=-4 e^{4/x}+\left (2+e^4\right ) x+4 x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 23, normalized size = 0.77 \begin {gather*} -4 e^{4/x}+2 x+e^4 x+4 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 21, normalized size = 0.70 \begin {gather*} 4 \, x^{2} + x e^{4} + 2 \, x - 4 \, e^{\frac {4}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 28, normalized size = 0.93 \begin {gather*} x^{2} {\left (\frac {e^{4}}{x} + \frac {2}{x} - \frac {4 \, e^{\frac {4}{x}}}{x^{2}} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 22, normalized size = 0.73
method | result | size |
derivativedivides | \(4 x^{2}+2 x +x \,{\mathrm e}^{4}-4 \,{\mathrm e}^{\frac {4}{x}}\) | \(22\) |
default | \(4 x^{2}+2 x +x \,{\mathrm e}^{4}-4 \,{\mathrm e}^{\frac {4}{x}}\) | \(22\) |
risch | \(4 x^{2}+2 x +x \,{\mathrm e}^{4}-4 \,{\mathrm e}^{\frac {4}{x}}\) | \(22\) |
norman | \(\frac {\left (2+{\mathrm e}^{4}\right ) x^{2}+4 x^{3}-4 x \,{\mathrm e}^{\frac {4}{x}}}{x}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 21, normalized size = 0.70 \begin {gather*} 4 \, x^{2} + x e^{4} + 2 \, x - 4 \, e^{\frac {4}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.66, size = 21, normalized size = 0.70 \begin {gather*} 2\,x-4\,{\mathrm {e}}^{4/x}+x\,{\mathrm {e}}^4+4\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 17, normalized size = 0.57 \begin {gather*} 4 x^{2} + x \left (2 + e^{4}\right ) - 4 e^{\frac {4}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________