Optimal. Leaf size=21 \[ \frac {2 \left (-1+2 e^{21 x} x^2\right )}{-\frac {1}{2}+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.24, antiderivative size = 39, normalized size of antiderivative = 1.86, number of steps used = 11, number of rules used = 7, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {27, 6742, 2199, 2194, 2176, 2177, 2178} \begin {gather*} 4 e^{21 x} x+2 e^{21 x}-\frac {2 e^{21 x}}{1-2 x}+\frac {4}{1-2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8+e^{21 x} \left (-16 x-152 x^2+336 x^3\right )}{(-1+2 x)^2} \, dx\\ &=\int \left (\frac {8}{(-1+2 x)^2}+\frac {8 e^{21 x} x \left (-2-19 x+42 x^2\right )}{(-1+2 x)^2}\right ) \, dx\\ &=\frac {4}{1-2 x}+8 \int \frac {e^{21 x} x \left (-2-19 x+42 x^2\right )}{(-1+2 x)^2} \, dx\\ &=\frac {4}{1-2 x}+8 \int \left (\frac {23 e^{21 x}}{4}+\frac {21}{2} e^{21 x} x-\frac {e^{21 x}}{2 (-1+2 x)^2}+\frac {21 e^{21 x}}{4 (-1+2 x)}\right ) \, dx\\ &=\frac {4}{1-2 x}-4 \int \frac {e^{21 x}}{(-1+2 x)^2} \, dx+42 \int \frac {e^{21 x}}{-1+2 x} \, dx+46 \int e^{21 x} \, dx+84 \int e^{21 x} x \, dx\\ &=\frac {46 e^{21 x}}{21}+\frac {4}{1-2 x}-\frac {2 e^{21 x}}{1-2 x}+4 e^{21 x} x+21 e^{21/2} \text {Ei}\left (-\frac {21}{2} (1-2 x)\right )-4 \int e^{21 x} \, dx-42 \int \frac {e^{21 x}}{-1+2 x} \, dx\\ &=2 e^{21 x}+\frac {4}{1-2 x}-\frac {2 e^{21 x}}{1-2 x}+4 e^{21 x} x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 20, normalized size = 0.95 \begin {gather*} \frac {4-8 e^{21 x} x^2}{1-2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 20, normalized size = 0.95 \begin {gather*} \frac {4 \, {\left (2 \, x^{2} e^{\left (21 \, x\right )} - 1\right )}}{2 \, x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 20, normalized size = 0.95 \begin {gather*} \frac {4 \, {\left (2 \, x^{2} e^{\left (21 \, x\right )} - 1\right )}}{2 \, x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 22, normalized size = 1.05
method | result | size |
norman | \(\frac {-8 x +8 x^{2} {\mathrm e}^{21 x}}{2 x -1}\) | \(22\) |
risch | \(-\frac {2}{x -\frac {1}{2}}+\frac {8 x^{2} {\mathrm e}^{21 x}}{2 x -1}\) | \(25\) |
derivativedivides | \(-\frac {84}{42 x -21}+\frac {21 \,{\mathrm e}^{21 x}}{21 x -\frac {21}{2}}+2 \,{\mathrm e}^{21 x}+4 \,{\mathrm e}^{21 x} x\) | \(37\) |
default | \(-\frac {84}{42 x -21}+\frac {21 \,{\mathrm e}^{21 x}}{21 x -\frac {21}{2}}+2 \,{\mathrm e}^{21 x}+4 \,{\mathrm e}^{21 x} x\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 26, normalized size = 1.24 \begin {gather*} \frac {8 \, x^{2} e^{\left (21 \, x\right )}}{2 \, x - 1} - \frac {4}{2 \, x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.82, size = 18, normalized size = 0.86 \begin {gather*} \frac {8\,x\,\left (x\,{\mathrm {e}}^{21\,x}-1\right )}{2\,x-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 20, normalized size = 0.95 \begin {gather*} \frac {8 x^{2} e^{21 x}}{2 x - 1} - \frac {8}{4 x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________