Optimal. Leaf size=20 \[ 1+x+\frac {-2-\frac {20}{x}}{4+e^x x} \]
________________________________________________________________________________________
Rubi [F] time = 1.06, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {80+16 x^2+e^{2 x} x^4+e^x \left (40 x+22 x^2+10 x^3\right )}{16 x^2+8 e^x x^3+e^{2 x} x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {80+16 x^2+e^{2 x} x^4+e^x \left (40 x+22 x^2+10 x^3\right )}{x^2 \left (4+e^x x\right )^2} \, dx\\ &=\int \left (1-\frac {8 \left (10+11 x+x^2\right )}{x^2 \left (4+e^x x\right )^2}+\frac {2 \left (20+11 x+x^2\right )}{x^2 \left (4+e^x x\right )}\right ) \, dx\\ &=x+2 \int \frac {20+11 x+x^2}{x^2 \left (4+e^x x\right )} \, dx-8 \int \frac {10+11 x+x^2}{x^2 \left (4+e^x x\right )^2} \, dx\\ &=x+2 \int \left (\frac {1}{4+e^x x}+\frac {20}{x^2 \left (4+e^x x\right )}+\frac {11}{x \left (4+e^x x\right )}\right ) \, dx-8 \int \left (\frac {1}{\left (4+e^x x\right )^2}+\frac {10}{x^2 \left (4+e^x x\right )^2}+\frac {11}{x \left (4+e^x x\right )^2}\right ) \, dx\\ &=x+2 \int \frac {1}{4+e^x x} \, dx-8 \int \frac {1}{\left (4+e^x x\right )^2} \, dx+22 \int \frac {1}{x \left (4+e^x x\right )} \, dx+40 \int \frac {1}{x^2 \left (4+e^x x\right )} \, dx-80 \int \frac {1}{x^2 \left (4+e^x x\right )^2} \, dx-88 \int \frac {1}{x \left (4+e^x x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 19, normalized size = 0.95 \begin {gather*} x-\frac {2 (10+x)}{x \left (4+e^x x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 29, normalized size = 1.45 \begin {gather*} \frac {x^{3} e^{x} + 4 \, x^{2} - 2 \, x - 20}{x^{2} e^{x} + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 29, normalized size = 1.45 \begin {gather*} \frac {x^{3} e^{x} + 4 \, x^{2} - 2 \, x - 20}{x^{2} e^{x} + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 19, normalized size = 0.95
method | result | size |
risch | \(x -\frac {2 \left (x +10\right )}{x \left ({\mathrm e}^{x} x +4\right )}\) | \(19\) |
norman | \(\frac {-20-2 x +{\mathrm e}^{x} x^{3}+4 x^{2}}{x \left ({\mathrm e}^{x} x +4\right )}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 29, normalized size = 1.45 \begin {gather*} \frac {x^{3} e^{x} + 4 \, x^{2} - 2 \, x - 20}{x^{2} e^{x} + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.70, size = 20, normalized size = 1.00 \begin {gather*} x-\frac {2\,x+20}{x\,\left (x\,{\mathrm {e}}^x+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 17, normalized size = 0.85 \begin {gather*} x + \frac {- 2 x - 20}{x^{2} e^{x} + 4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________