Optimal. Leaf size=32 \[ x \left (1+\frac {\left (-x+25 x^2\right ) \left (5+\frac {e^x}{10+x-\log (4)}\right )}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.33, antiderivative size = 56, normalized size of antiderivative = 1.75, number of steps used = 10, number of rules used = 6, integrand size = 93, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {6688, 2199, 2176, 2194, 2178, 2177} \begin {gather*} 125 x^2+25 e^x x-4 x-25 e^x+\frac {e^x (251-25 \log (4)) (10-\log (4))}{x+10-\log (4)}-2 e^x (113-25 \log (2)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-4+250 x+\frac {e^x \left (-10+25 x^3+x^2 (274-25 \log (4))+49 x (10-\log (4))+\log (4)\right )}{(10+x-\log (4))^2}\right ) \, dx\\ &=-4 x+125 x^2+\int \frac {e^x \left (-10+25 x^3+x^2 (274-25 \log (4))+49 x (10-\log (4))+\log (4)\right )}{(10+x-\log (4))^2} \, dx\\ &=-4 x+125 x^2+\int \left (25 e^x x-226 e^x \left (1-\frac {25 \log (2)}{113}\right )+\frac {e^x (251-25 \log (4)) (10-\log (4))}{10+x-\log (4)}+\frac {e^x \left (-2510+501 \log (4)-25 \log ^2(4)\right )}{(10+x-\log (4))^2}\right ) \, dx\\ &=-4 x+125 x^2+25 \int e^x x \, dx-(2 (113-25 \log (2))) \int e^x \, dx-((251-25 \log (4)) (10-\log (4))) \int \frac {e^x}{(10+x-\log (4))^2} \, dx+((251-25 \log (4)) (10-\log (4))) \int \frac {e^x}{10+x-\log (4)} \, dx\\ &=-4 x+25 e^x x+125 x^2-2 e^x (113-25 \log (2))+\frac {4 \text {Ei}(10+x-\log (4)) (251-25 \log (4)) (10-\log (4))}{e^{10}}+\frac {e^x (251-25 \log (4)) (10-\log (4))}{10+x-\log (4)}-25 \int e^x \, dx-((251-25 \log (4)) (10-\log (4))) \int \frac {e^x}{10+x-\log (4)} \, dx\\ &=-25 e^x-4 x+25 e^x x+125 x^2-2 e^x (113-25 \log (2))+\frac {e^x (251-25 \log (4)) (10-\log (4))}{10+x-\log (4)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 25, normalized size = 0.78 \begin {gather*} x \left (-4+125 x+\frac {e^x (-1+25 x)}{10+x-\log (4)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 49, normalized size = 1.53 \begin {gather*} \frac {125 \, x^{3} + 1246 \, x^{2} + {\left (25 \, x^{2} - x\right )} e^{x} - 2 \, {\left (125 \, x^{2} - 4 \, x\right )} \log \relax (2) - 40 \, x}{x - 2 \, \log \relax (2) + 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 48, normalized size = 1.50 \begin {gather*} \frac {125 \, x^{3} + 25 \, x^{2} e^{x} - 250 \, x^{2} \log \relax (2) + 1246 \, x^{2} - x e^{x} + 8 \, x \log \relax (2) - 40 \, x}{x - 2 \, \log \relax (2) + 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 51, normalized size = 1.59
method | result | size |
norman | \(\frac {\left (250 \ln \relax (2)-1246\right ) x^{2}+{\mathrm e}^{x} x -125 x^{3}-25 \,{\mathrm e}^{x} x^{2}-16 \ln \relax (2)^{2}+160 \ln \relax (2)-400}{2 \ln \relax (2)-x -10}\) | \(51\) |
default | \(-4 x +125 x^{2}+\frac {2510 \,{\mathrm e}^{x}}{10+x -2 \ln \relax (2)}-\frac {1002 \ln \relax (2) {\mathrm e}^{x}}{10+x -2 \ln \relax (2)}-251 \,{\mathrm e}^{x}+\frac {100 \,{\mathrm e}^{x} \ln \relax (2)^{2}}{10+x -2 \ln \relax (2)}+25 \,{\mathrm e}^{x} x +50 \,{\mathrm e}^{x} \ln \relax (2)\) | \(70\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -1000 \, {\left (\frac {2 \, {\left (\log \relax (2) - 5\right )}}{x - 2 \, \log \relax (2) + 10} - \log \left (x - 2 \, \log \relax (2) + 10\right )\right )} \log \relax (2)^{2} + 125 \, x^{2} + 1000 \, x {\left (\log \relax (2) - 5\right )} - 2 \, {\left (\log \relax (2) - 5\right )} \int \frac {e^{x}}{x^{2} - 4 \, x {\left (\log \relax (2) - 5\right )} + 4 \, \log \relax (2)^{2} - 40 \, \log \relax (2) + 100}\,{d x} - 1000 \, {\left (4 \, {\left (\log \relax (2) - 5\right )} \log \left (x - 2 \, \log \relax (2) + 10\right ) + x - \frac {4 \, {\left (\log \relax (2)^{2} - 10 \, \log \relax (2) + 25\right )}}{x - 2 \, \log \relax (2) + 10}\right )} \log \relax (2) + 9984 \, {\left (\frac {2 \, {\left (\log \relax (2) - 5\right )}}{x - 2 \, \log \relax (2) + 10} - \log \left (x - 2 \, \log \relax (2) + 10\right )\right )} \log \relax (2) - \frac {8 \, e^{\left (-10\right )} E_{2}\left (-x + 2 \, \log \relax (2) - 10\right ) \log \relax (2)}{x - 2 \, \log \relax (2) + 10} + 3000 \, {\left (\log \relax (2)^{2} - 10 \, \log \relax (2) + 25\right )} \log \left (x - 2 \, \log \relax (2) + 10\right ) + 19984 \, {\left (\log \relax (2) - 5\right )} \log \left (x - 2 \, \log \relax (2) + 10\right ) + 4996 \, x + \frac {{\left (25 \, x^{2} - x\right )} e^{x}}{x - 2 \, \log \relax (2) + 10} + \frac {40 \, e^{\left (-10\right )} E_{2}\left (-x + 2 \, \log \relax (2) - 10\right )}{x - 2 \, \log \relax (2) + 10} + \frac {16 \, \log \relax (2)^{2}}{x - 2 \, \log \relax (2) + 10} - \frac {2000 \, {\left (\log \relax (2)^{3} - 15 \, \log \relax (2)^{2} + 75 \, \log \relax (2) - 125\right )}}{x - 2 \, \log \relax (2) + 10} - \frac {19984 \, {\left (\log \relax (2)^{2} - 10 \, \log \relax (2) + 25\right )}}{x - 2 \, \log \relax (2) + 10} - \frac {49840 \, {\left (\log \relax (2) - 5\right )}}{x - 2 \, \log \relax (2) + 10} - \frac {160 \, \log \relax (2)}{x - 2 \, \log \relax (2) + 10} + \frac {400}{x - 2 \, \log \relax (2) + 10} + 24920 \, \log \left (x - 2 \, \log \relax (2) + 10\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {24920\,x+{\mathrm {e}}^x\,\left (490\,x-2\,\ln \relax (2)\,\left (25\,x^2+49\,x-1\right )+274\,x^2+25\,x^3-10\right )-2\,\ln \relax (2)\,\left (500\,x^2+4992\,x-80\right )+4\,{\ln \relax (2)}^2\,\left (250\,x-4\right )+4996\,x^2+250\,x^3-400}{20\,x-2\,\ln \relax (2)\,\left (2\,x+20\right )+4\,{\ln \relax (2)}^2+x^2+100} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 26, normalized size = 0.81 \begin {gather*} 125 x^{2} - 4 x + \frac {\left (25 x^{2} - x\right ) e^{x}}{x - 2 \log {\relax (2 )} + 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________