Optimal. Leaf size=26 \[ 5-e^{\frac {2 x}{5 (5+x) \left (e^5-\log (4)\right )^2}} \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 36, normalized size of antiderivative = 1.38, number of steps used = 6, number of rules used = 5, integrand size = 84, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.060, Rules used = {6, 12, 6688, 2230, 2209} \begin {gather*} -\exp \left (\frac {2}{5 \left (e^5-\log (4)\right )^2}-\frac {2}{(x+5) \left (e^5-\log (4)\right )^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2209
Rule 2230
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int -\frac {2 \exp \left (\frac {2 x}{e^{10} (25+5 x)+e^5 (-50-10 x) \log (4)+(25+5 x) \log ^2(4)}\right )}{e^5 \left (-50-20 x-2 x^2\right ) \log (4)+\left (25+10 x+x^2\right ) \left (e^{10}+\log ^2(4)\right )} \, dx\\ &=-\left (2 \int \frac {\exp \left (\frac {2 x}{e^{10} (25+5 x)+e^5 (-50-10 x) \log (4)+(25+5 x) \log ^2(4)}\right )}{e^5 \left (-50-20 x-2 x^2\right ) \log (4)+\left (25+10 x+x^2\right ) \left (e^{10}+\log ^2(4)\right )} \, dx\right )\\ &=-\left (2 \int \frac {e^{\frac {2 x}{5 (5+x) \left (e^5-\log (4)\right )^2}}}{(5+x)^2 \left (e^5-\log (4)\right )^2} \, dx\right )\\ &=-\frac {2 \int \frac {e^{\frac {2 x}{5 (5+x) \left (e^5-\log (4)\right )^2}}}{(5+x)^2} \, dx}{\left (e^5-\log (4)\right )^2}\\ &=-\frac {2 \int \frac {\exp \left (\frac {2}{5 \left (e^5-\log (4)\right )^2}-\frac {2}{(5+x) \left (e^5-\log (4)\right )^2}\right )}{(5+x)^2} \, dx}{\left (e^5-\log (4)\right )^2}\\ &=-\exp \left (\frac {2}{5 \left (e^5-\log (4)\right )^2}-\frac {2}{(5+x) \left (e^5-\log (4)\right )^2}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 24, normalized size = 0.92 \begin {gather*} -e^{\frac {2 x}{5 (5+x) \left (e^5-\log (4)\right )^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 34, normalized size = 1.31 \begin {gather*} -e^{\left (-\frac {2 \, x}{5 \, {\left (4 \, {\left (x + 5\right )} e^{5} \log \relax (2) - 4 \, {\left (x + 5\right )} \log \relax (2)^{2} - {\left (x + 5\right )} e^{10}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, e^{\left (-\frac {2 \, x}{5 \, {\left (4 \, {\left (x + 5\right )} e^{5} \log \relax (2) - 4 \, {\left (x + 5\right )} \log \relax (2)^{2} - {\left (x + 5\right )} e^{10}\right )}}\right )}}{4 \, {\left (x^{2} + 10 \, x + 25\right )} e^{5} \log \relax (2) - 4 \, {\left (x^{2} + 10 \, x + 25\right )} \log \relax (2)^{2} - {\left (x^{2} + 10 \, x + 25\right )} e^{10}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.29, size = 29, normalized size = 1.12
method | result | size |
risch | \(-{\mathrm e}^{\frac {2 x}{5 \left (5+x \right ) \left (-4 \,{\mathrm e}^{5} \ln \relax (2)+4 \ln \relax (2)^{2}+{\mathrm e}^{10}\right )}}\) | \(29\) |
gosper | \(-{\mathrm e}^{\frac {2 x}{5 \left (x \,{\mathrm e}^{10}-4 x \,{\mathrm e}^{5} \ln \relax (2)+4 x \ln \relax (2)^{2}+5 \,{\mathrm e}^{10}-20 \,{\mathrm e}^{5} \ln \relax (2)+20 \ln \relax (2)^{2}\right )}}\) | \(48\) |
derivativedivides | \(\frac {25 \left (4 \,{\mathrm e}^{5} \ln \relax (2)-4 \ln \relax (2)^{2}-{\mathrm e}^{10}\right ) \left (\frac {{\mathrm e}^{10}}{25}-\frac {4 \,{\mathrm e}^{5} \ln \relax (2)}{25}+\frac {4 \ln \relax (2)^{2}}{25}\right ) {\mathrm e}^{-\frac {2}{\left (-4 \,{\mathrm e}^{5} \ln \relax (2)+4 \ln \relax (2)^{2}+{\mathrm e}^{10}\right ) \left (5+x \right )}+\frac {2}{5 \left (-4 \,{\mathrm e}^{5} \ln \relax (2)+4 \ln \relax (2)^{2}+{\mathrm e}^{10}\right )}}}{\left (-4 \,{\mathrm e}^{5} \ln \relax (2)+4 \ln \relax (2)^{2}+{\mathrm e}^{10}\right )^{2}}\) | \(109\) |
default | \(\frac {25 \left (4 \,{\mathrm e}^{5} \ln \relax (2)-4 \ln \relax (2)^{2}-{\mathrm e}^{10}\right ) \left (\frac {{\mathrm e}^{10}}{25}-\frac {4 \,{\mathrm e}^{5} \ln \relax (2)}{25}+\frac {4 \ln \relax (2)^{2}}{25}\right ) {\mathrm e}^{-\frac {2}{\left (-4 \,{\mathrm e}^{5} \ln \relax (2)+4 \ln \relax (2)^{2}+{\mathrm e}^{10}\right ) \left (5+x \right )}+\frac {2}{5 \left (-4 \,{\mathrm e}^{5} \ln \relax (2)+4 \ln \relax (2)^{2}+{\mathrm e}^{10}\right )}}}{\left (-4 \,{\mathrm e}^{5} \ln \relax (2)+4 \ln \relax (2)^{2}+{\mathrm e}^{10}\right )^{2}}\) | \(109\) |
norman | \(\frac {\left (-5 \,{\mathrm e}^{5}+10 \ln \relax (2)\right ) {\mathrm e}^{\frac {2 x}{4 \left (25+5 x \right ) \ln \relax (2)^{2}+2 \left (-10 x -50\right ) {\mathrm e}^{5} \ln \relax (2)+\left (25+5 x \right ) {\mathrm e}^{10}}}+\left (-{\mathrm e}^{5}+2 \ln \relax (2)\right ) x \,{\mathrm e}^{\frac {2 x}{4 \left (25+5 x \right ) \ln \relax (2)^{2}+2 \left (-10 x -50\right ) {\mathrm e}^{5} \ln \relax (2)+\left (25+5 x \right ) {\mathrm e}^{10}}}}{\left (5+x \right ) \left ({\mathrm e}^{5}-2 \ln \relax (2)\right )}\) | \(116\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 65, normalized size = 2.50 \begin {gather*} -e^{\left (\frac {2}{{\left (4 \, e^{5} \log \relax (2) - 4 \, \log \relax (2)^{2} - e^{10}\right )} x + 20 \, e^{5} \log \relax (2) - 20 \, \log \relax (2)^{2} - 5 \, e^{10}} - \frac {2}{5 \, {\left (4 \, e^{5} \log \relax (2) - 4 \, \log \relax (2)^{2} - e^{10}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.85, size = 44, normalized size = 1.69 \begin {gather*} -{\mathrm {e}}^{\frac {2\,x}{25\,{\mathrm {e}}^{10}-100\,{\mathrm {e}}^5\,\ln \relax (2)+5\,x\,{\mathrm {e}}^{10}+20\,x\,{\ln \relax (2)}^2+100\,{\ln \relax (2)}^2-20\,x\,{\mathrm {e}}^5\,\ln \relax (2)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 37, normalized size = 1.42 \begin {gather*} - e^{\frac {2 x}{\left (- 20 x - 100\right ) e^{5} \log {\relax (2 )} + \left (5 x + 25\right ) e^{10} + \left (20 x + 100\right ) \log {\relax (2 )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________