3.523 \(\int \frac {x}{1+2 f^{c+d x}+f^{2 c+2 d x}} \, dx\)

Optimal. Leaf size=96 \[ -\frac {\text {Li}_2\left (-f^{c+d x}\right )}{d^2 \log ^2(f)}+\frac {\log \left (f^{c+d x}+1\right )}{d^2 \log ^2(f)}-\frac {x \log \left (f^{c+d x}+1\right )}{d \log (f)}+\frac {x}{d \log (f) \left (f^{c+d x}+1\right )}-\frac {x}{d \log (f)}+\frac {x^2}{2} \]

[Out]

1/2*x^2-x/d/ln(f)+x/d/(1+f^(d*x+c))/ln(f)+ln(1+f^(d*x+c))/d^2/ln(f)^2-x*ln(1+f^(d*x+c))/d/ln(f)-polylog(2,-f^(
d*x+c))/d^2/ln(f)^2

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 11, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {6688, 2185, 2184, 2190, 2279, 2391, 2191, 2282, 36, 29, 31} \[ -\frac {\text {PolyLog}\left (2,-f^{c+d x}\right )}{d^2 \log ^2(f)}+\frac {\log \left (f^{c+d x}+1\right )}{d^2 \log ^2(f)}-\frac {x \log \left (f^{c+d x}+1\right )}{d \log (f)}+\frac {x}{d \log (f) \left (f^{c+d x}+1\right )}-\frac {x}{d \log (f)}+\frac {x^2}{2} \]

Antiderivative was successfully verified.

[In]

Int[x/(1 + 2*f^(c + d*x) + f^(2*c + 2*d*x)),x]

[Out]

x^2/2 - x/(d*Log[f]) + x/(d*(1 + f^(c + d*x))*Log[f]) + Log[1 + f^(c + d*x)]/(d^2*Log[f]^2) - (x*Log[1 + f^(c
+ d*x)])/(d*Log[f]) - PolyLog[2, -f^(c + d*x)]/(d^2*Log[f]^2)

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 36

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 2184

Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[(c
+ d*x)^(m + 1)/(a*d*(m + 1)), x] - Dist[b/a, Int[((c + d*x)^m*(F^(g*(e + f*x)))^n)/(a + b*(F^(g*(e + f*x)))^n)
, x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2185

Int[((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.))^(p_)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Dis
t[1/a, Int[(c + d*x)^m*(a + b*(F^(g*(e + f*x)))^n)^(p + 1), x], x] - Dist[b/a, Int[(c + d*x)^m*(F^(g*(e + f*x)
))^n*(a + b*(F^(g*(e + f*x)))^n)^p, x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && ILtQ[p, 0] && IGtQ[m, 0
]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2191

Int[((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((a_.) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.))^(p_.)*
((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m*(a + b*(F^(g*(e + f*x)))^n)^(p + 1))/(b*f*g*n*(p +
1)*Log[F]), x] - Dist[(d*m)/(b*f*g*n*(p + 1)*Log[F]), Int[(c + d*x)^(m - 1)*(a + b*(F^(g*(e + f*x)))^n)^(p + 1
), x], x] /; FreeQ[{F, a, b, c, d, e, f, g, m, n, p}, x] && NeQ[p, -1]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

\begin {align*} \int \frac {x}{1+2 f^{c+d x}+f^{2 c+2 d x}} \, dx &=\int \frac {x}{\left (1+f^{c+d x}\right )^2} \, dx\\ &=-\int \frac {f^{c+d x} x}{\left (1+f^{c+d x}\right )^2} \, dx+\int \frac {x}{1+f^{c+d x}} \, dx\\ &=\frac {x^2}{2}+\frac {x}{d \left (1+f^{c+d x}\right ) \log (f)}-\frac {\int \frac {1}{1+f^{c+d x}} \, dx}{d \log (f)}-\int \frac {f^{c+d x} x}{1+f^{c+d x}} \, dx\\ &=\frac {x^2}{2}+\frac {x}{d \left (1+f^{c+d x}\right ) \log (f)}-\frac {x \log \left (1+f^{c+d x}\right )}{d \log (f)}-\frac {\operatorname {Subst}\left (\int \frac {1}{x (1+x)} \, dx,x,f^{c+d x}\right )}{d^2 \log ^2(f)}+\frac {\int \log \left (1+f^{c+d x}\right ) \, dx}{d \log (f)}\\ &=\frac {x^2}{2}+\frac {x}{d \left (1+f^{c+d x}\right ) \log (f)}-\frac {x \log \left (1+f^{c+d x}\right )}{d \log (f)}-\frac {\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,f^{c+d x}\right )}{d^2 \log ^2(f)}+\frac {\operatorname {Subst}\left (\int \frac {1}{1+x} \, dx,x,f^{c+d x}\right )}{d^2 \log ^2(f)}+\frac {\operatorname {Subst}\left (\int \frac {\log (1+x)}{x} \, dx,x,f^{c+d x}\right )}{d^2 \log ^2(f)}\\ &=\frac {x^2}{2}-\frac {x}{d \log (f)}+\frac {x}{d \left (1+f^{c+d x}\right ) \log (f)}+\frac {\log \left (1+f^{c+d x}\right )}{d^2 \log ^2(f)}-\frac {x \log \left (1+f^{c+d x}\right )}{d \log (f)}-\frac {\text {Li}_2\left (-f^{c+d x}\right )}{d^2 \log ^2(f)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.18, size = 88, normalized size = 0.92 \[ -\frac {\text {Li}_2\left (-f^{c+d x}\right )}{d^2 \log ^2(f)}+\frac {\log \left (f^{c+d x}+1\right )}{d^2 \log ^2(f)}+\frac {1}{2} x \left (\frac {2}{d \log (f) f^{c+d x}+d \log (f)}+x\right )-\frac {x \left (\log \left (f^{c+d x}+1\right )+1\right )}{d \log (f)} \]

Antiderivative was successfully verified.

[In]

Integrate[x/(1 + 2*f^(c + d*x) + f^(2*c + 2*d*x)),x]

[Out]

(x*(x + 2/(d*Log[f] + d*f^(c + d*x)*Log[f])))/2 + Log[1 + f^(c + d*x)]/(d^2*Log[f]^2) - (x*(1 + Log[1 + f^(c +
 d*x)]))/(d*Log[f]) - PolyLog[2, -f^(c + d*x)]/(d^2*Log[f]^2)

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 143, normalized size = 1.49 \[ \frac {{\left (d^{2} x^{2} - c^{2}\right )} \log \relax (f)^{2} + {\left ({\left (d^{2} x^{2} - c^{2}\right )} \log \relax (f)^{2} - 2 \, {\left (d x + c\right )} \log \relax (f)\right )} f^{d x + c} - 2 \, {\left (f^{d x + c} + 1\right )} {\rm Li}_2\left (-f^{d x + c}\right ) - 2 \, {\left (d x \log \relax (f) + {\left (d x \log \relax (f) - 1\right )} f^{d x + c} - 1\right )} \log \left (f^{d x + c} + 1\right ) - 2 \, c \log \relax (f)}{2 \, {\left (d^{2} f^{d x + c} \log \relax (f)^{2} + d^{2} \log \relax (f)^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(1+2*f^(d*x+c)+f^(2*d*x+2*c)),x, algorithm="fricas")

[Out]

1/2*((d^2*x^2 - c^2)*log(f)^2 + ((d^2*x^2 - c^2)*log(f)^2 - 2*(d*x + c)*log(f))*f^(d*x + c) - 2*(f^(d*x + c) +
 1)*dilog(-f^(d*x + c)) - 2*(d*x*log(f) + (d*x*log(f) - 1)*f^(d*x + c) - 1)*log(f^(d*x + c) + 1) - 2*c*log(f))
/(d^2*f^(d*x + c)*log(f)^2 + d^2*log(f)^2)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{f^{2 \, d x + 2 \, c} + 2 \, f^{d x + c} + 1}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(1+2*f^(d*x+c)+f^(2*d*x+2*c)),x, algorithm="giac")

[Out]

integrate(x/(f^(2*d*x + 2*c) + 2*f^(d*x + c) + 1), x)

________________________________________________________________________________________

maple [A]  time = 0.08, size = 143, normalized size = 1.49 \[ \frac {x^{2}}{2}+\frac {c x}{d}+\frac {c^{2}}{2 d^{2}}-\frac {x \ln \left (f^{c} f^{d x}+1\right )}{d \ln \relax (f )}-\frac {c \ln \left (f^{c} f^{d x}\right )}{d^{2} \ln \relax (f )}+\frac {x}{\left (f^{d x +c}+1\right ) d \ln \relax (f )}-\frac {\polylog \left (2, -f^{c} f^{d x}\right )}{d^{2} \ln \relax (f )^{2}}-\frac {\ln \left (f^{c} f^{d x}\right )}{d^{2} \ln \relax (f )^{2}}+\frac {\ln \left (f^{c} f^{d x}+1\right )}{d^{2} \ln \relax (f )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(1+2*f^(d*x+c)+f^(2*d*x+2*c)),x)

[Out]

x/d/(1+f^(d*x+c))/ln(f)+1/2*x^2+c/d*x+1/2*c^2/d^2-1/d/ln(f)*ln(f^(d*x)*f^c+1)*x-1/d^2/ln(f)^2*polylog(2,-f^(d*
x)*f^c)+1/d^2/ln(f)^2*ln(f^(d*x)*f^c+1)-1/d^2/ln(f)^2*ln(f^(d*x)*f^c)-1/d^2/ln(f)*c*ln(f^(d*x)*f^c)

________________________________________________________________________________________

maxima [A]  time = 1.04, size = 95, normalized size = 0.99 \[ \frac {1}{2} \, x^{2} + \frac {x}{d f^{d x} f^{c} \log \relax (f) + d \log \relax (f)} - \frac {x}{d \log \relax (f)} - \frac {d x \log \left (f^{d x} f^{c} + 1\right ) \log \relax (f) + {\rm Li}_2\left (-f^{d x} f^{c}\right )}{d^{2} \log \relax (f)^{2}} + \frac {\log \left (f^{d x} f^{c} + 1\right )}{d^{2} \log \relax (f)^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(1+2*f^(d*x+c)+f^(2*d*x+2*c)),x, algorithm="maxima")

[Out]

1/2*x^2 + x/(d*f^(d*x)*f^c*log(f) + d*log(f)) - x/(d*log(f)) - (d*x*log(f^(d*x)*f^c + 1)*log(f) + dilog(-f^(d*
x)*f^c))/(d^2*log(f)^2) + log(f^(d*x)*f^c + 1)/(d^2*log(f)^2)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x}{f^{2\,c+2\,d\,x}+2\,f^{c+d\,x}+1} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(f^(2*c + 2*d*x) + 2*f^(c + d*x) + 1),x)

[Out]

int(x/(f^(2*c + 2*d*x) + 2*f^(c + d*x) + 1), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {x}{d f^{c + d x} \log {\relax (f )} + d \log {\relax (f )}} + \frac {\int \frac {d x \log {\relax (f )}}{e^{c \log {\relax (f )}} e^{d x \log {\relax (f )}} + 1}\, dx + \int \left (- \frac {1}{e^{c \log {\relax (f )}} e^{d x \log {\relax (f )}} + 1}\right )\, dx}{d \log {\relax (f )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(1+2*f**(d*x+c)+f**(2*d*x+2*c)),x)

[Out]

x/(d*f**(c + d*x)*log(f) + d*log(f)) + (Integral(d*x*log(f)/(exp(c*log(f))*exp(d*x*log(f)) + 1), x) + Integral
(-1/(exp(c*log(f))*exp(d*x*log(f)) + 1), x))/(d*log(f))

________________________________________________________________________________________