3.548 \(\int \frac {1}{(a+b F^{\frac {c \sqrt {d+e x}}{\sqrt {f+g x}}}) (d f+(e f+d g) x+e g x^2)} \, dx\)

Optimal. Leaf size=53 \[ \text {Int}\left (\frac {1}{\left (x (d g+e f)+d f+e g x^2\right ) \left (a+b F^{\frac {c \sqrt {d+e x}}{\sqrt {f+g x}}}\right )},x\right ) \]

[Out]

Unintegrable(1/(a+b*F^(c*(e*x+d)^(1/2)/(g*x+f)^(1/2)))/(d*f+(d*g+e*f)*x+e*g*x^2),x)

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {1}{\left (a+b F^{\frac {c \sqrt {d+e x}}{\sqrt {f+g x}}}\right ) \left (d f+(e f+d g) x+e g x^2\right )} \, dx \]

Verification is Not applicable to the result.

[In]

Int[1/((a + b*F^((c*Sqrt[d + e*x])/Sqrt[f + g*x]))*(d*f + (e*f + d*g)*x + e*g*x^2)),x]

[Out]

Defer[Int][1/((a + b*F^((c*Sqrt[d + e*x])/Sqrt[f + g*x]))*(d*f + (e*f + d*g)*x + e*g*x^2)), x]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+b F^{\frac {c \sqrt {d+e x}}{\sqrt {f+g x}}}\right ) \left (d f+(e f+d g) x+e g x^2\right )} \, dx &=\int \frac {1}{\left (a+b F^{\frac {c \sqrt {d+e x}}{\sqrt {f+g x}}}\right ) \left (d f+(e f+d g) x+e g x^2\right )} \, dx\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.39, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a+b F^{\frac {c \sqrt {d+e x}}{\sqrt {f+g x}}}\right ) \left (d f+(e f+d g) x+e g x^2\right )} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[1/((a + b*F^((c*Sqrt[d + e*x])/Sqrt[f + g*x]))*(d*f + (e*f + d*g)*x + e*g*x^2)),x]

[Out]

Integrate[1/((a + b*F^((c*Sqrt[d + e*x])/Sqrt[f + g*x]))*(d*f + (e*f + d*g)*x + e*g*x^2)), x]

________________________________________________________________________________________

fricas [A]  time = 0.44, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {1}{a e g x^{2} + a d f + {\left (b e g x^{2} + b d f + {\left (b e f + b d g\right )} x\right )} F^{\frac {\sqrt {e x + d} c}{\sqrt {g x + f}}} + {\left (a e f + a d g\right )} x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*F^(c*(e*x+d)^(1/2)/(g*x+f)^(1/2)))/(d*f+(d*g+e*f)*x+e*g*x^2),x, algorithm="fricas")

[Out]

integral(1/(a*e*g*x^2 + a*d*f + (b*e*g*x^2 + b*d*f + (b*e*f + b*d*g)*x)*F^(sqrt(e*x + d)*c/sqrt(g*x + f)) + (a
*e*f + a*d*g)*x), x)

________________________________________________________________________________________

giac [A]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (e g x^{2} + d f + {\left (e f + d g\right )} x\right )} {\left (F^{\frac {\sqrt {e x + d} c}{\sqrt {g x + f}}} b + a\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*F^(c*(e*x+d)^(1/2)/(g*x+f)^(1/2)))/(d*f+(d*g+e*f)*x+e*g*x^2),x, algorithm="giac")

[Out]

integrate(1/((e*g*x^2 + d*f + (e*f + d*g)*x)*(F^(sqrt(e*x + d)*c/sqrt(g*x + f))*b + a)), x)

________________________________________________________________________________________

maple [A]  time = 0.16, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (b \,F^{\frac {\sqrt {e x +d}\, c}{\sqrt {g x +f}}}+a \right ) \left (e g \,x^{2}+d f +\left (d g +e f \right ) x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*F^((e*x+d)^(1/2)/(g*x+f)^(1/2)*c)+a)/(e*g*x^2+d*f+(d*g+e*f)*x),x)

[Out]

int(1/(b*F^((e*x+d)^(1/2)/(g*x+f)^(1/2)*c)+a)/(e*g*x^2+d*f+(d*g+e*f)*x),x)

________________________________________________________________________________________

maxima [A]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (e g x^{2} + d f + {\left (e f + d g\right )} x\right )} {\left (F^{\frac {\sqrt {e x + d} c}{\sqrt {g x + f}}} b + a\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*F^(c*(e*x+d)^(1/2)/(g*x+f)^(1/2)))/(d*f+(d*g+e*f)*x+e*g*x^2),x, algorithm="maxima")

[Out]

integrate(1/((e*g*x^2 + d*f + (e*f + d*g)*x)*(F^(sqrt(e*x + d)*c/sqrt(g*x + f))*b + a)), x)

________________________________________________________________________________________

mupad [A]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {1}{\left (a+F^{\frac {c\,\sqrt {d+e\,x}}{\sqrt {f+g\,x}}}\,b\right )\,\left (e\,g\,x^2+\left (d\,g+e\,f\right )\,x+d\,f\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + F^((c*(d + e*x)^(1/2))/(f + g*x)^(1/2))*b)*(d*f + x*(d*g + e*f) + e*g*x^2)),x)

[Out]

int(1/((a + F^((c*(d + e*x)^(1/2))/(f + g*x)^(1/2))*b)*(d*f + x*(d*g + e*f) + e*g*x^2)), x)

________________________________________________________________________________________

sympy [A]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (d + e x\right ) \left (f + g x\right ) \left (F^{\frac {c \sqrt {d + e x}}{\sqrt {f + g x}}} b + a\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*F**(c*(e*x+d)**(1/2)/(g*x+f)**(1/2)))/(d*f+(d*g+e*f)*x+e*g*x**2),x)

[Out]

Integral(1/((d + e*x)*(f + g*x)*(F**(c*sqrt(d + e*x)/sqrt(f + g*x))*b + a)), x)

________________________________________________________________________________________