3.635 \(\int \frac {e^{a+b x+c x^2} (b+2 c x)}{(a+b x+c x^2)^{9/2}} \, dx\)

Optimal. Leaf size=145 \[ \frac {16}{105} \sqrt {\pi } \text {erfi}\left (\sqrt {a+b x+c x^2}\right )-\frac {16 e^{a+b x+c x^2}}{105 \sqrt {a+b x+c x^2}}-\frac {8 e^{a+b x+c x^2}}{105 \left (a+b x+c x^2\right )^{3/2}}-\frac {4 e^{a+b x+c x^2}}{35 \left (a+b x+c x^2\right )^{5/2}}-\frac {2 e^{a+b x+c x^2}}{7 \left (a+b x+c x^2\right )^{7/2}} \]

[Out]

-2/7*exp(c*x^2+b*x+a)/(c*x^2+b*x+a)^(7/2)-4/35*exp(c*x^2+b*x+a)/(c*x^2+b*x+a)^(5/2)-8/105*exp(c*x^2+b*x+a)/(c*
x^2+b*x+a)^(3/2)+16/105*erfi((c*x^2+b*x+a)^(1/2))*Pi^(1/2)-16/105*exp(c*x^2+b*x+a)/(c*x^2+b*x+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.38, antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {6707, 2177, 2180, 2204} \[ \frac {16}{105} \sqrt {\pi } \text {Erfi}\left (\sqrt {a+b x+c x^2}\right )-\frac {16 e^{a+b x+c x^2}}{105 \sqrt {a+b x+c x^2}}-\frac {8 e^{a+b x+c x^2}}{105 \left (a+b x+c x^2\right )^{3/2}}-\frac {4 e^{a+b x+c x^2}}{35 \left (a+b x+c x^2\right )^{5/2}}-\frac {2 e^{a+b x+c x^2}}{7 \left (a+b x+c x^2\right )^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[(E^(a + b*x + c*x^2)*(b + 2*c*x))/(a + b*x + c*x^2)^(9/2),x]

[Out]

(-2*E^(a + b*x + c*x^2))/(7*(a + b*x + c*x^2)^(7/2)) - (4*E^(a + b*x + c*x^2))/(35*(a + b*x + c*x^2)^(5/2)) -
(8*E^(a + b*x + c*x^2))/(105*(a + b*x + c*x^2)^(3/2)) - (16*E^(a + b*x + c*x^2))/(105*Sqrt[a + b*x + c*x^2]) +
 (16*Sqrt[Pi]*Erfi[Sqrt[a + b*x + c*x^2]])/105

Rule 2177

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[((c + d*x)^(m
 + 1)*(b*F^(g*(e + f*x)))^n)/(d*(m + 1)), x] - Dist[(f*g*n*Log[F])/(d*(m + 1)), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] &&  !$UseGamma ===
True

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 6707

Int[(F_)^(v_)*(u_)*(w_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Dist[q, Subst[Int[x^m*F^x,
x], x, v], x] /;  !FalseQ[q]] /; FreeQ[{F, m}, x] && EqQ[w, v]

Rubi steps

\begin {align*} \int \frac {e^{a+b x+c x^2} (b+2 c x)}{\left (a+b x+c x^2\right )^{9/2}} \, dx &=\operatorname {Subst}\left (\int \frac {e^x}{x^{9/2}} \, dx,x,a+b x+c x^2\right )\\ &=-\frac {2 e^{a+b x+c x^2}}{7 \left (a+b x+c x^2\right )^{7/2}}+\frac {2}{7} \operatorname {Subst}\left (\int \frac {e^x}{x^{7/2}} \, dx,x,a+b x+c x^2\right )\\ &=-\frac {2 e^{a+b x+c x^2}}{7 \left (a+b x+c x^2\right )^{7/2}}-\frac {4 e^{a+b x+c x^2}}{35 \left (a+b x+c x^2\right )^{5/2}}+\frac {4}{35} \operatorname {Subst}\left (\int \frac {e^x}{x^{5/2}} \, dx,x,a+b x+c x^2\right )\\ &=-\frac {2 e^{a+b x+c x^2}}{7 \left (a+b x+c x^2\right )^{7/2}}-\frac {4 e^{a+b x+c x^2}}{35 \left (a+b x+c x^2\right )^{5/2}}-\frac {8 e^{a+b x+c x^2}}{105 \left (a+b x+c x^2\right )^{3/2}}+\frac {8}{105} \operatorname {Subst}\left (\int \frac {e^x}{x^{3/2}} \, dx,x,a+b x+c x^2\right )\\ &=-\frac {2 e^{a+b x+c x^2}}{7 \left (a+b x+c x^2\right )^{7/2}}-\frac {4 e^{a+b x+c x^2}}{35 \left (a+b x+c x^2\right )^{5/2}}-\frac {8 e^{a+b x+c x^2}}{105 \left (a+b x+c x^2\right )^{3/2}}-\frac {16 e^{a+b x+c x^2}}{105 \sqrt {a+b x+c x^2}}+\frac {16}{105} \operatorname {Subst}\left (\int \frac {e^x}{\sqrt {x}} \, dx,x,a+b x+c x^2\right )\\ &=-\frac {2 e^{a+b x+c x^2}}{7 \left (a+b x+c x^2\right )^{7/2}}-\frac {4 e^{a+b x+c x^2}}{35 \left (a+b x+c x^2\right )^{5/2}}-\frac {8 e^{a+b x+c x^2}}{105 \left (a+b x+c x^2\right )^{3/2}}-\frac {16 e^{a+b x+c x^2}}{105 \sqrt {a+b x+c x^2}}+\frac {32}{105} \operatorname {Subst}\left (\int e^{x^2} \, dx,x,\sqrt {a+b x+c x^2}\right )\\ &=-\frac {2 e^{a+b x+c x^2}}{7 \left (a+b x+c x^2\right )^{7/2}}-\frac {4 e^{a+b x+c x^2}}{35 \left (a+b x+c x^2\right )^{5/2}}-\frac {8 e^{a+b x+c x^2}}{105 \left (a+b x+c x^2\right )^{3/2}}-\frac {16 e^{a+b x+c x^2}}{105 \sqrt {a+b x+c x^2}}+\frac {16}{105} \sqrt {\pi } \text {erfi}\left (\sqrt {a+b x+c x^2}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.24, size = 103, normalized size = 0.71 \[ -\frac {2 \left (e^{a+x (b+c x)} \left (8 (a+x (b+c x))^3+4 (a+x (b+c x))^2+6 (a+x (b+c x))+15\right )+8 (-a-x (b+c x))^{7/2} \Gamma \left (\frac {1}{2},-a-x (b+c x)\right )\right )}{105 (a+x (b+c x))^{7/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(E^(a + b*x + c*x^2)*(b + 2*c*x))/(a + b*x + c*x^2)^(9/2),x]

[Out]

(-2*(E^(a + x*(b + c*x))*(15 + 6*(a + x*(b + c*x)) + 4*(a + x*(b + c*x))^2 + 8*(a + x*(b + c*x))^3) + 8*(-a -
x*(b + c*x))^(7/2)*Gamma[1/2, -a - x*(b + c*x)]))/(105*(a + x*(b + c*x))^(7/2))

________________________________________________________________________________________

fricas [F]  time = 0.43, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} e^{\left (c x^{2} + b x + a\right )}}{c^{5} x^{10} + 5 \, b c^{4} x^{9} + 5 \, {\left (2 \, b^{2} c^{3} + a c^{4}\right )} x^{8} + 10 \, {\left (b^{3} c^{2} + 2 \, a b c^{3}\right )} x^{7} + 5 \, {\left (b^{4} c + 6 \, a b^{2} c^{2} + 2 \, a^{2} c^{3}\right )} x^{6} + 5 \, a^{4} b x + {\left (b^{5} + 20 \, a b^{3} c + 30 \, a^{2} b c^{2}\right )} x^{5} + a^{5} + 5 \, {\left (a b^{4} + 6 \, a^{2} b^{2} c + 2 \, a^{3} c^{2}\right )} x^{4} + 10 \, {\left (a^{2} b^{3} + 2 \, a^{3} b c\right )} x^{3} + 5 \, {\left (2 \, a^{3} b^{2} + a^{4} c\right )} x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(c*x^2+b*x+a)*(2*c*x+b)/(c*x^2+b*x+a)^(9/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + b*x + a)*(2*c*x + b)*e^(c*x^2 + b*x + a)/(c^5*x^10 + 5*b*c^4*x^9 + 5*(2*b^2*c^3 + a*c^4)
*x^8 + 10*(b^3*c^2 + 2*a*b*c^3)*x^7 + 5*(b^4*c + 6*a*b^2*c^2 + 2*a^2*c^3)*x^6 + 5*a^4*b*x + (b^5 + 20*a*b^3*c
+ 30*a^2*b*c^2)*x^5 + a^5 + 5*(a*b^4 + 6*a^2*b^2*c + 2*a^3*c^2)*x^4 + 10*(a^2*b^3 + 2*a^3*b*c)*x^3 + 5*(2*a^3*
b^2 + a^4*c)*x^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (2 \, c x + b\right )} e^{\left (c x^{2} + b x + a\right )}}{{\left (c x^{2} + b x + a\right )}^{\frac {9}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(c*x^2+b*x+a)*(2*c*x+b)/(c*x^2+b*x+a)^(9/2),x, algorithm="giac")

[Out]

integrate((2*c*x + b)*e^(c*x^2 + b*x + a)/(c*x^2 + b*x + a)^(9/2), x)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 120, normalized size = 0.83 \[ \frac {16 \sqrt {\pi }\, \erfi \left (\sqrt {c \,x^{2}+b x +a}\right )}{105}-\frac {2 \,{\mathrm e}^{c \,x^{2}+b x +a}}{7 \left (c \,x^{2}+b x +a \right )^{\frac {7}{2}}}-\frac {4 \,{\mathrm e}^{c \,x^{2}+b x +a}}{35 \left (c \,x^{2}+b x +a \right )^{\frac {5}{2}}}-\frac {8 \,{\mathrm e}^{c \,x^{2}+b x +a}}{105 \left (c \,x^{2}+b x +a \right )^{\frac {3}{2}}}-\frac {16 \,{\mathrm e}^{c \,x^{2}+b x +a}}{105 \sqrt {c \,x^{2}+b x +a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(c*x^2+b*x+a)*(2*c*x+b)/(c*x^2+b*x+a)^(9/2),x)

[Out]

-2/7*exp(c*x^2+b*x+a)/(c*x^2+b*x+a)^(7/2)-4/35/(c*x^2+b*x+a)^(5/2)*exp(c*x^2+b*x+a)-8/105/(c*x^2+b*x+a)^(3/2)*
exp(c*x^2+b*x+a)+16/105*erfi((c*x^2+b*x+a)^(1/2))*Pi^(1/2)-16/105/(c*x^2+b*x+a)^(1/2)*exp(c*x^2+b*x+a)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (2 \, c x + b\right )} e^{\left (c x^{2} + b x + a\right )}}{{\left (c x^{2} + b x + a\right )}^{\frac {9}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(c*x^2+b*x+a)*(2*c*x+b)/(c*x^2+b*x+a)^(9/2),x, algorithm="maxima")

[Out]

integrate((2*c*x + b)*e^(c*x^2 + b*x + a)/(c*x^2 + b*x + a)^(9/2), x)

________________________________________________________________________________________

mupad [B]  time = 5.70, size = 154, normalized size = 1.06 \[ -\frac {{\mathrm {e}}^{c\,x^2+b\,x+a}\,\left (30\,c\,x^2+30\,b\,x+30\,a\right )+12\,{\mathrm {e}}^{c\,x^2+b\,x+a}\,{\left (c\,x^2+b\,x+a\right )}^2+8\,{\mathrm {e}}^{c\,x^2+b\,x+a}\,{\left (c\,x^2+b\,x+a\right )}^3+16\,{\mathrm {e}}^{c\,x^2+b\,x+a}\,{\left (c\,x^2+b\,x+a\right )}^4-16\,\sqrt {\pi }\,\mathrm {erfc}\left (\sqrt {-c\,x^2-b\,x-a}\right )\,{\left (-c\,x^2-b\,x-a\right )}^{9/2}}{105\,{\left (c\,x^2+b\,x+a\right )}^{9/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(a + b*x + c*x^2)*(b + 2*c*x))/(a + b*x + c*x^2)^(9/2),x)

[Out]

-(exp(a + b*x + c*x^2)*(30*a + 30*b*x + 30*c*x^2) + 12*exp(a + b*x + c*x^2)*(a + b*x + c*x^2)^2 + 8*exp(a + b*
x + c*x^2)*(a + b*x + c*x^2)^3 + 16*exp(a + b*x + c*x^2)*(a + b*x + c*x^2)^4 - 16*pi^(1/2)*erfc((- a - b*x - c
*x^2)^(1/2))*(- a - b*x - c*x^2)^(9/2))/(105*(a + b*x + c*x^2)^(9/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(c*x**2+b*x+a)*(2*c*x+b)/(c*x**2+b*x+a)**(9/2),x)

[Out]

Timed out

________________________________________________________________________________________