3.640 \(\int e^x \sqrt {3-4 e^{2 x}} \, dx\)

Optimal. Leaf size=36 \[ \frac {1}{2} e^x \sqrt {3-4 e^{2 x}}+\frac {3}{4} \sin ^{-1}\left (\frac {2 e^x}{\sqrt {3}}\right ) \]

[Out]

3/4*arcsin(2/3*exp(x)*3^(1/2))+1/2*exp(x)*(3-4*exp(2*x))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 36, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {2249, 195, 216} \[ \frac {1}{2} e^x \sqrt {3-4 e^{2 x}}+\frac {3}{4} \sin ^{-1}\left (\frac {2 e^x}{\sqrt {3}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[E^x*Sqrt[3 - 4*E^(2*x)],x]

[Out]

(E^x*Sqrt[3 - 4*E^(2*x)])/2 + (3*ArcSin[(2*E^x)/Sqrt[3]])/4

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2249

Int[((a_) + (b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))))^(p_.)*(G_)^((h_.)*((f_.) + (g_.)*(x_))), x_Symbol] :> Wit
h[{m = FullSimplify[(d*e*Log[F])/(g*h*Log[G])]}, Dist[Denominator[m]/(g*h*Log[G]), Subst[Int[x^(Denominator[m]
 - 1)*(a + b*F^(c*e - (d*e*f)/g)*x^Numerator[m])^p, x], x, G^((h*(f + g*x))/Denominator[m])], x] /; LtQ[m, -1]
 || GtQ[m, 1]] /; FreeQ[{F, G, a, b, c, d, e, f, g, h, p}, x]

Rubi steps

\begin {align*} \int e^x \sqrt {3-4 e^{2 x}} \, dx &=\operatorname {Subst}\left (\int \sqrt {3-4 x^2} \, dx,x,e^x\right )\\ &=\frac {1}{2} e^x \sqrt {3-4 e^{2 x}}+\frac {3}{2} \operatorname {Subst}\left (\int \frac {1}{\sqrt {3-4 x^2}} \, dx,x,e^x\right )\\ &=\frac {1}{2} e^x \sqrt {3-4 e^{2 x}}+\frac {3}{4} \sin ^{-1}\left (\frac {2 e^x}{\sqrt {3}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 36, normalized size = 1.00 \[ \frac {1}{4} \left (2 e^x \sqrt {3-4 e^{2 x}}+3 \sin ^{-1}\left (\frac {2 e^x}{\sqrt {3}}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[E^x*Sqrt[3 - 4*E^(2*x)],x]

[Out]

(2*E^x*Sqrt[3 - 4*E^(2*x)] + 3*ArcSin[(2*E^x)/Sqrt[3]])/4

________________________________________________________________________________________

fricas [A]  time = 0.41, size = 34, normalized size = 0.94 \[ \frac {1}{2} \, \sqrt {-4 \, e^{\left (2 \, x\right )} + 3} e^{x} - \frac {3}{4} \, \arctan \left (\frac {1}{2} \, \sqrt {-4 \, e^{\left (2 \, x\right )} + 3} e^{\left (-x\right )}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(x)*(3-4*exp(2*x))^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(-4*e^(2*x) + 3)*e^x - 3/4*arctan(1/2*sqrt(-4*e^(2*x) + 3)*e^(-x))

________________________________________________________________________________________

giac [A]  time = 0.20, size = 25, normalized size = 0.69 \[ \frac {1}{2} \, \sqrt {-4 \, e^{\left (2 \, x\right )} + 3} e^{x} + \frac {3}{4} \, \arcsin \left (\frac {2}{3} \, \sqrt {3} e^{x}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(x)*(3-4*exp(2*x))^(1/2),x, algorithm="giac")

[Out]

1/2*sqrt(-4*e^(2*x) + 3)*e^x + 3/4*arcsin(2/3*sqrt(3)*e^x)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 26, normalized size = 0.72 \[ \frac {3 \arcsin \left (\frac {2 \sqrt {3}\, {\mathrm e}^{x}}{3}\right )}{4}+\frac {\sqrt {-4 \,{\mathrm e}^{2 x}+3}\, {\mathrm e}^{x}}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(x)*(3-4*exp(2*x))^(1/2),x)

[Out]

1/2*exp(x)*(3-4*exp(x)^2)^(1/2)+3/4*arcsin(2/3*3^(1/2)*exp(x))

________________________________________________________________________________________

maxima [A]  time = 2.08, size = 25, normalized size = 0.69 \[ \frac {1}{2} \, \sqrt {-4 \, e^{\left (2 \, x\right )} + 3} e^{x} + \frac {3}{4} \, \arcsin \left (\frac {2}{3} \, \sqrt {3} e^{x}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(x)*(3-4*exp(2*x))^(1/2),x, algorithm="maxima")

[Out]

1/2*sqrt(-4*e^(2*x) + 3)*e^x + 3/4*arcsin(2/3*sqrt(3)*e^x)

________________________________________________________________________________________

mupad [B]  time = 0.09, size = 24, normalized size = 0.67 \[ \frac {3\,\mathrm {asin}\left (\frac {2\,\sqrt {3}\,{\mathrm {e}}^x}{3}\right )}{4}+{\mathrm {e}}^x\,\sqrt {\frac {3}{4}-{\mathrm {e}}^{2\,x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(x)*(3 - 4*exp(2*x))^(1/2),x)

[Out]

(3*asin((2*3^(1/2)*exp(x))/3))/4 + exp(x)*(3/4 - exp(2*x))^(1/2)

________________________________________________________________________________________

sympy [A]  time = 1.56, size = 42, normalized size = 1.17 \[ \begin {cases} \frac {\sqrt {3 - 4 e^{2 x}} e^{x}}{2} + \frac {3 \operatorname {asin}{\left (\frac {2 \sqrt {3} e^{x}}{3} \right )}}{4} & \text {for}\: e^{x} < \log {\left (\frac {\sqrt {3}}{2} \right )} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(x)*(3-4*exp(2*x))**(1/2),x)

[Out]

Piecewise((sqrt(3 - 4*exp(2*x))*exp(x)/2 + 3*asin(2*sqrt(3)*exp(x)/3)/4, exp(x) < log(sqrt(3)/2)))

________________________________________________________________________________________