3.642 \(\int e^x \sqrt {1-e^{2 x}} \, dx\)

Optimal. Leaf size=29 \[ \frac {1}{2} e^x \sqrt {1-e^{2 x}}+\frac {1}{2} \sin ^{-1}\left (e^x\right ) \]

[Out]

1/2*arcsin(exp(x))+1/2*exp(x)*(1-exp(2*x))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 29, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {2249, 195, 216} \[ \frac {1}{2} e^x \sqrt {1-e^{2 x}}+\frac {1}{2} \sin ^{-1}\left (e^x\right ) \]

Antiderivative was successfully verified.

[In]

Int[E^x*Sqrt[1 - E^(2*x)],x]

[Out]

(E^x*Sqrt[1 - E^(2*x)])/2 + ArcSin[E^x]/2

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2249

Int[((a_) + (b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))))^(p_.)*(G_)^((h_.)*((f_.) + (g_.)*(x_))), x_Symbol] :> Wit
h[{m = FullSimplify[(d*e*Log[F])/(g*h*Log[G])]}, Dist[Denominator[m]/(g*h*Log[G]), Subst[Int[x^(Denominator[m]
 - 1)*(a + b*F^(c*e - (d*e*f)/g)*x^Numerator[m])^p, x], x, G^((h*(f + g*x))/Denominator[m])], x] /; LtQ[m, -1]
 || GtQ[m, 1]] /; FreeQ[{F, G, a, b, c, d, e, f, g, h, p}, x]

Rubi steps

\begin {align*} \int e^x \sqrt {1-e^{2 x}} \, dx &=\operatorname {Subst}\left (\int \sqrt {1-x^2} \, dx,x,e^x\right )\\ &=\frac {1}{2} e^x \sqrt {1-e^{2 x}}+\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2}} \, dx,x,e^x\right )\\ &=\frac {1}{2} e^x \sqrt {1-e^{2 x}}+\frac {1}{2} \sin ^{-1}\left (e^x\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 26, normalized size = 0.90 \[ \frac {1}{2} \left (e^x \sqrt {1-e^{2 x}}+\sin ^{-1}\left (e^x\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[E^x*Sqrt[1 - E^(2*x)],x]

[Out]

(E^x*Sqrt[1 - E^(2*x)] + ArcSin[E^x])/2

________________________________________________________________________________________

fricas [A]  time = 0.41, size = 35, normalized size = 1.21 \[ \frac {1}{2} \, \sqrt {-e^{\left (2 \, x\right )} + 1} e^{x} - \arctan \left ({\left (\sqrt {-e^{\left (2 \, x\right )} + 1} - 1\right )} e^{\left (-x\right )}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(x)*(1-exp(2*x))^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(-e^(2*x) + 1)*e^x - arctan((sqrt(-e^(2*x) + 1) - 1)*e^(-x))

________________________________________________________________________________________

giac [A]  time = 0.22, size = 20, normalized size = 0.69 \[ \frac {1}{2} \, \sqrt {-e^{\left (2 \, x\right )} + 1} e^{x} + \frac {1}{2} \, \arcsin \left (e^{x}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(x)*(1-exp(2*x))^(1/2),x, algorithm="giac")

[Out]

1/2*sqrt(-e^(2*x) + 1)*e^x + 1/2*arcsin(e^x)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 21, normalized size = 0.72 \[ \frac {\arcsin \left ({\mathrm e}^{x}\right )}{2}+\frac {\sqrt {-{\mathrm e}^{2 x}+1}\, {\mathrm e}^{x}}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(x)*(1-exp(2*x))^(1/2),x)

[Out]

1/2*exp(x)*(1-exp(x)^2)^(1/2)+1/2*arcsin(exp(x))

________________________________________________________________________________________

maxima [A]  time = 1.77, size = 20, normalized size = 0.69 \[ \frac {1}{2} \, \sqrt {-e^{\left (2 \, x\right )} + 1} e^{x} + \frac {1}{2} \, \arcsin \left (e^{x}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(x)*(1-exp(2*x))^(1/2),x, algorithm="maxima")

[Out]

1/2*sqrt(-e^(2*x) + 1)*e^x + 1/2*arcsin(e^x)

________________________________________________________________________________________

mupad [B]  time = 3.35, size = 20, normalized size = 0.69 \[ \frac {\mathrm {asin}\left ({\mathrm {e}}^x\right )}{2}+\frac {{\mathrm {e}}^x\,\sqrt {1-{\mathrm {e}}^{2\,x}}}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(x)*(1 - exp(2*x))^(1/2),x)

[Out]

asin(exp(x))/2 + (exp(x)*(1 - exp(2*x))^(1/2))/2

________________________________________________________________________________________

sympy [A]  time = 1.35, size = 24, normalized size = 0.83 \[ \begin {cases} \frac {\sqrt {1 - e^{2 x}} e^{x}}{2} + \frac {\operatorname {asin}{\left (e^{x} \right )}}{2} & \text {for}\: e^{x} < 0 \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(x)*(1-exp(2*x))**(1/2),x)

[Out]

Piecewise((sqrt(1 - exp(2*x))*exp(x)/2 + asin(exp(x))/2, exp(x) < 0))

________________________________________________________________________________________