3.734 \(\int \frac {e^{x^2}}{x^2} \, dx\)

Optimal. Leaf size=19 \[ \sqrt {\pi } \text {erfi}(x)-\frac {e^{x^2}}{x} \]

[Out]

-exp(x^2)/x+erfi(x)*Pi^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {2214, 2204} \[ \sqrt {\pi } \text {Erfi}(x)-\frac {e^{x^2}}{x} \]

Antiderivative was successfully verified.

[In]

Int[E^x^2/x^2,x]

[Out]

-(E^x^2/x) + Sqrt[Pi]*Erfi[x]

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2214

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^(m
 + 1)*F^(a + b*(c + d*x)^n))/(d*(m + 1)), x] - Dist[(b*n*Log[F])/(m + 1), Int[(c + d*x)^(m + n)*F^(a + b*(c +
d*x)^n), x], x] /; FreeQ[{F, a, b, c, d}, x] && IntegerQ[(2*(m + 1))/n] && LtQ[-4, (m + 1)/n, 5] && IntegerQ[n
] && ((GtQ[n, 0] && LtQ[m, -1]) || (GtQ[-n, 0] && LeQ[-n, m + 1]))

Rubi steps

\begin {align*} \int \frac {e^{x^2}}{x^2} \, dx &=-\frac {e^{x^2}}{x}+2 \int e^{x^2} \, dx\\ &=-\frac {e^{x^2}}{x}+\sqrt {\pi } \text {erfi}(x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 19, normalized size = 1.00 \[ \sqrt {\pi } \text {erfi}(x)-\frac {e^{x^2}}{x} \]

Antiderivative was successfully verified.

[In]

Integrate[E^x^2/x^2,x]

[Out]

-(E^x^2/x) + Sqrt[Pi]*Erfi[x]

________________________________________________________________________________________

fricas [A]  time = 0.41, size = 18, normalized size = 0.95 \[ \frac {\sqrt {\pi } x \operatorname {erfi}\relax (x) - e^{\left (x^{2}\right )}}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(x^2)/x^2,x, algorithm="fricas")

[Out]

(sqrt(pi)*x*erfi(x) - e^(x^2))/x

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {e^{\left (x^{2}\right )}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(x^2)/x^2,x, algorithm="giac")

[Out]

integrate(e^(x^2)/x^2, x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 17, normalized size = 0.89 \[ \sqrt {\pi }\, \erfi \relax (x )-\frac {{\mathrm e}^{x^{2}}}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(x^2)/x^2,x)

[Out]

-exp(x^2)/x+erfi(x)*Pi^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.15, size = 19, normalized size = 1.00 \[ -\frac {\sqrt {-x^{2}} \Gamma \left (-\frac {1}{2}, -x^{2}\right )}{2 \, x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(x^2)/x^2,x, algorithm="maxima")

[Out]

-1/2*sqrt(-x^2)*gamma(-1/2, -x^2)/x

________________________________________________________________________________________

mupad [B]  time = 3.60, size = 21, normalized size = 1.11 \[ -\frac {{\mathrm {e}}^{x^2}}{x}+\sqrt {\pi }\,\mathrm {erfc}\left (x\,1{}\mathrm {i}\right )\,1{}\mathrm {i} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(x^2)/x^2,x)

[Out]

pi^(1/2)*erfc(x*1i)*1i - exp(x^2)/x

________________________________________________________________________________________

sympy [A]  time = 0.47, size = 14, normalized size = 0.74 \[ \sqrt {\pi } \operatorname {erfi}{\relax (x )} - \frac {e^{x^{2}}}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(x**2)/x**2,x)

[Out]

sqrt(pi)*erfi(x) - exp(x**2)/x

________________________________________________________________________________________