3.79 \(\int \frac {f^{a+b x^2}}{x^7} \, dx\)

Optimal. Leaf size=81 \[ \frac {1}{12} b^3 f^a \log ^3(f) \text {Ei}\left (b x^2 \log (f)\right )-\frac {b^2 \log ^2(f) f^{a+b x^2}}{12 x^2}-\frac {f^{a+b x^2}}{6 x^6}-\frac {b \log (f) f^{a+b x^2}}{12 x^4} \]

[Out]

-1/6*f^(b*x^2+a)/x^6-1/12*b*f^(b*x^2+a)*ln(f)/x^4-1/12*b^2*f^(b*x^2+a)*ln(f)^2/x^2+1/12*b^3*f^a*Ei(b*x^2*ln(f)
)*ln(f)^3

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 81, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 2, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {2214, 2210} \[ \frac {1}{12} b^3 f^a \log ^3(f) \text {Ei}\left (b x^2 \log (f)\right )-\frac {b^2 \log ^2(f) f^{a+b x^2}}{12 x^2}-\frac {f^{a+b x^2}}{6 x^6}-\frac {b \log (f) f^{a+b x^2}}{12 x^4} \]

Antiderivative was successfully verified.

[In]

Int[f^(a + b*x^2)/x^7,x]

[Out]

-f^(a + b*x^2)/(6*x^6) - (b*f^(a + b*x^2)*Log[f])/(12*x^4) - (b^2*f^(a + b*x^2)*Log[f]^2)/(12*x^2) + (b^3*f^a*
ExpIntegralEi[b*x^2*Log[f]]*Log[f]^3)/12

Rule 2210

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> Simp[(F^a*ExpIntegralEi[
b*(c + d*x)^n*Log[F]])/(f*n), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[d*e - c*f, 0]

Rule 2214

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^(m
 + 1)*F^(a + b*(c + d*x)^n))/(d*(m + 1)), x] - Dist[(b*n*Log[F])/(m + 1), Int[(c + d*x)^(m + n)*F^(a + b*(c +
d*x)^n), x], x] /; FreeQ[{F, a, b, c, d}, x] && IntegerQ[(2*(m + 1))/n] && LtQ[-4, (m + 1)/n, 5] && IntegerQ[n
] && ((GtQ[n, 0] && LtQ[m, -1]) || (GtQ[-n, 0] && LeQ[-n, m + 1]))

Rubi steps

\begin {align*} \int \frac {f^{a+b x^2}}{x^7} \, dx &=-\frac {f^{a+b x^2}}{6 x^6}+\frac {1}{3} (b \log (f)) \int \frac {f^{a+b x^2}}{x^5} \, dx\\ &=-\frac {f^{a+b x^2}}{6 x^6}-\frac {b f^{a+b x^2} \log (f)}{12 x^4}+\frac {1}{6} \left (b^2 \log ^2(f)\right ) \int \frac {f^{a+b x^2}}{x^3} \, dx\\ &=-\frac {f^{a+b x^2}}{6 x^6}-\frac {b f^{a+b x^2} \log (f)}{12 x^4}-\frac {b^2 f^{a+b x^2} \log ^2(f)}{12 x^2}+\frac {1}{6} \left (b^3 \log ^3(f)\right ) \int \frac {f^{a+b x^2}}{x} \, dx\\ &=-\frac {f^{a+b x^2}}{6 x^6}-\frac {b f^{a+b x^2} \log (f)}{12 x^4}-\frac {b^2 f^{a+b x^2} \log ^2(f)}{12 x^2}+\frac {1}{12} b^3 f^a \text {Ei}\left (b x^2 \log (f)\right ) \log ^3(f)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 59, normalized size = 0.73 \[ \frac {f^a \left (b^3 x^6 \log ^3(f) \text {Ei}\left (b x^2 \log (f)\right )-f^{b x^2} \left (b^2 x^4 \log ^2(f)+b x^2 \log (f)+2\right )\right )}{12 x^6} \]

Antiderivative was successfully verified.

[In]

Integrate[f^(a + b*x^2)/x^7,x]

[Out]

(f^a*(b^3*x^6*ExpIntegralEi[b*x^2*Log[f]]*Log[f]^3 - f^(b*x^2)*(2 + b*x^2*Log[f] + b^2*x^4*Log[f]^2)))/(12*x^6
)

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 59, normalized size = 0.73 \[ \frac {b^{3} f^{a} x^{6} {\rm Ei}\left (b x^{2} \log \relax (f)\right ) \log \relax (f)^{3} - {\left (b^{2} x^{4} \log \relax (f)^{2} + b x^{2} \log \relax (f) + 2\right )} f^{b x^{2} + a}}{12 \, x^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(f^(b*x^2+a)/x^7,x, algorithm="fricas")

[Out]

1/12*(b^3*f^a*x^6*Ei(b*x^2*log(f))*log(f)^3 - (b^2*x^4*log(f)^2 + b*x^2*log(f) + 2)*f^(b*x^2 + a))/x^6

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {f^{b x^{2} + a}}{x^{7}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(f^(b*x^2+a)/x^7,x, algorithm="giac")

[Out]

integrate(f^(b*x^2 + a)/x^7, x)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 79, normalized size = 0.98 \[ -\frac {b^{3} f^{a} \Ei \left (1, -b \,x^{2} \ln \relax (f )\right ) \ln \relax (f )^{3}}{12}-\frac {b^{2} f^{a} f^{b \,x^{2}} \ln \relax (f )^{2}}{12 x^{2}}-\frac {b \,f^{a} f^{b \,x^{2}} \ln \relax (f )}{12 x^{4}}-\frac {f^{a} f^{b \,x^{2}}}{6 x^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(f^(b*x^2+a)/x^7,x)

[Out]

-1/6*f^a/x^6*f^(b*x^2)-1/12*f^a*ln(f)*b/x^4*f^(b*x^2)-1/12*f^a*ln(f)^2*b^2/x^2*f^(b*x^2)-1/12*f^a*ln(f)^3*b^3*
Ei(1,-b*x^2*ln(f))

________________________________________________________________________________________

maxima [A]  time = 0.65, size = 22, normalized size = 0.27 \[ \frac {1}{2} \, b^{3} f^{a} \Gamma \left (-3, -b x^{2} \log \relax (f)\right ) \log \relax (f)^{3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(f^(b*x^2+a)/x^7,x, algorithm="maxima")

[Out]

1/2*b^3*f^a*gamma(-3, -b*x^2*log(f))*log(f)^3

________________________________________________________________________________________

mupad [B]  time = 3.54, size = 69, normalized size = 0.85 \[ -\frac {b^3\,f^a\,{\ln \relax (f)}^3\,\left (f^{b\,x^2}\,\left (\frac {1}{6\,b\,x^2\,\ln \relax (f)}+\frac {1}{6\,b^2\,x^4\,{\ln \relax (f)}^2}+\frac {1}{3\,b^3\,x^6\,{\ln \relax (f)}^3}\right )+\frac {\mathrm {expint}\left (-b\,x^2\,\ln \relax (f)\right )}{6}\right )}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(f^(a + b*x^2)/x^7,x)

[Out]

-(b^3*f^a*log(f)^3*(f^(b*x^2)*(1/(6*b*x^2*log(f)) + 1/(6*b^2*x^4*log(f)^2) + 1/(3*b^3*x^6*log(f)^3)) + expint(
-b*x^2*log(f))/6))/2

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {f^{a + b x^{2}}}{x^{7}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(f**(b*x**2+a)/x**7,x)

[Out]

Integral(f**(a + b*x**2)/x**7, x)

________________________________________________________________________________________