3.124 \(\int \sec ^4(c+d x) (a+a \sin (c+d x))^{3/2} \, dx\)

Optimal. Leaf size=107 \[ -\frac {a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{2 \sqrt {2} d}+\frac {\sec ^3(c+d x) (a \sin (c+d x)+a)^{3/2}}{3 d}+\frac {a \sec (c+d x) \sqrt {a \sin (c+d x)+a}}{2 d} \]

[Out]

1/3*sec(d*x+c)^3*(a+a*sin(d*x+c))^(3/2)/d-1/4*a^(3/2)*arctanh(1/2*cos(d*x+c)*a^(1/2)*2^(1/2)/(a+a*sin(d*x+c))^
(1/2))/d*2^(1/2)+1/2*a*sec(d*x+c)*(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {2675, 2649, 206} \[ -\frac {a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{2 \sqrt {2} d}+\frac {\sec ^3(c+d x) (a \sin (c+d x)+a)^{3/2}}{3 d}+\frac {a \sec (c+d x) \sqrt {a \sin (c+d x)+a}}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^4*(a + a*Sin[c + d*x])^(3/2),x]

[Out]

-(a^(3/2)*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(2*Sqrt[2]*d) + (a*Sec[c + d*x]*
Sqrt[a + a*Sin[c + d*x]])/(2*d) + (Sec[c + d*x]^3*(a + a*Sin[c + d*x])^(3/2))/(3*d)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2675

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> -Simp[(b*(g
*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m)/(a*f*g*(p + 1)), x] + Dist[(a*(m + p + 1))/(g^2*(p + 1)), Int[(
g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0]
 && GtQ[m, 0] && LeQ[p, -2*m] && IntegersQ[m + 1/2, 2*p]

Rubi steps

\begin {align*} \int \sec ^4(c+d x) (a+a \sin (c+d x))^{3/2} \, dx &=\frac {\sec ^3(c+d x) (a+a \sin (c+d x))^{3/2}}{3 d}+\frac {1}{2} a \int \sec ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx\\ &=\frac {a \sec (c+d x) \sqrt {a+a \sin (c+d x)}}{2 d}+\frac {\sec ^3(c+d x) (a+a \sin (c+d x))^{3/2}}{3 d}+\frac {1}{4} a^2 \int \frac {1}{\sqrt {a+a \sin (c+d x)}} \, dx\\ &=\frac {a \sec (c+d x) \sqrt {a+a \sin (c+d x)}}{2 d}+\frac {\sec ^3(c+d x) (a+a \sin (c+d x))^{3/2}}{3 d}-\frac {a^2 \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{2 d}\\ &=-\frac {a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{2 \sqrt {2} d}+\frac {a \sec (c+d x) \sqrt {a+a \sin (c+d x)}}{2 d}+\frac {\sec ^3(c+d x) (a+a \sin (c+d x))^{3/2}}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.40, size = 130, normalized size = 1.21 \[ \frac {\left (\frac {1}{12}+\frac {i}{12}\right ) a \sec ^3(c+d x) \sqrt {a (\sin (c+d x)+1)} \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )^2 \left (6 (-1)^{3/4} \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^3 \tanh ^{-1}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \left (\tan \left (\frac {1}{4} (c+d x)\right )-1\right )\right )-(1-i) (3 \sin (c+d x)-5)\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^4*(a + a*Sin[c + d*x])^(3/2),x]

[Out]

((1/12 + I/12)*a*Sec[c + d*x]^3*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2*Sqrt[a*(1 + Sin[c + d*x])]*(6*(-1)^(3/
4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(c + d*x)/4])]*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^3 - (1 - I)*(
-5 + 3*Sin[c + d*x])))/d

________________________________________________________________________________________

fricas [B]  time = 0.64, size = 215, normalized size = 2.01 \[ \frac {3 \, {\left (\sqrt {2} a \cos \left (d x + c\right ) \sin \left (d x + c\right ) - \sqrt {2} a \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {a \sin \left (d x + c\right ) + a} {\left (\sqrt {2} \cos \left (d x + c\right ) - \sqrt {2} \sin \left (d x + c\right ) + \sqrt {2}\right )} \sqrt {a} + 3 \, a \cos \left (d x + c\right ) - {\left (a \cos \left (d x + c\right ) - 2 \, a\right )} \sin \left (d x + c\right ) + 2 \, a}{\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right ) + 4 \, {\left (3 \, a \sin \left (d x + c\right ) - 5 \, a\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{24 \, {\left (d \cos \left (d x + c\right ) \sin \left (d x + c\right ) - d \cos \left (d x + c\right )\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4*(a+a*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/24*(3*(sqrt(2)*a*cos(d*x + c)*sin(d*x + c) - sqrt(2)*a*cos(d*x + c))*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt
(a*sin(d*x + c) + a)*(sqrt(2)*cos(d*x + c) - sqrt(2)*sin(d*x + c) + sqrt(2))*sqrt(a) + 3*a*cos(d*x + c) - (a*c
os(d*x + c) - 2*a)*sin(d*x + c) + 2*a)/(cos(d*x + c)^2 - (cos(d*x + c) + 2)*sin(d*x + c) - cos(d*x + c) - 2))
+ 4*(3*a*sin(d*x + c) - 5*a)*sqrt(a*sin(d*x + c) + a))/(d*cos(d*x + c)*sin(d*x + c) - d*cos(d*x + c))

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4*(a+a*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.23, size = 107, normalized size = 1.00 \[ \frac {\left (1+\sin \left (d x +c \right )\right ) \left (3 \sqrt {2}\, \arctanh \left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a^{2} \left (a -a \sin \left (d x +c \right )\right )^{\frac {3}{2}}-10 a^{\frac {7}{2}}+6 a^{\frac {7}{2}} \sin \left (d x +c \right )\right )}{12 a^{\frac {3}{2}} \left (\sin \left (d x +c \right )-1\right ) \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^4*(a+a*sin(d*x+c))^(3/2),x)

[Out]

1/12/a^(3/2)*(1+sin(d*x+c))/(sin(d*x+c)-1)*(3*2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a^2*
(a-a*sin(d*x+c))^(3/2)-10*a^(7/2)+6*a^(7/2)*sin(d*x+c))/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4*(a+a*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^4} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(c + d*x))^(3/2)/cos(c + d*x)^4,x)

[Out]

int((a + a*sin(c + d*x))^(3/2)/cos(c + d*x)^4, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**4*(a+a*sin(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________