3.177 \(\int \frac {\sec ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=134 \[ -\frac {15 \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{32 \sqrt {2} a^{3/2} d}-\frac {15 \cos (c+d x)}{32 d (a \sin (c+d x)+a)^{3/2}}+\frac {5 \sec (c+d x)}{8 a d \sqrt {a \sin (c+d x)+a}}-\frac {\sec (c+d x)}{4 d (a \sin (c+d x)+a)^{3/2}} \]

[Out]

-15/32*cos(d*x+c)/d/(a+a*sin(d*x+c))^(3/2)-1/4*sec(d*x+c)/d/(a+a*sin(d*x+c))^(3/2)-15/64*arctanh(1/2*cos(d*x+c
)*a^(1/2)*2^(1/2)/(a+a*sin(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)+5/8*sec(d*x+c)/a/d/(a+a*sin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 134, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2681, 2687, 2650, 2649, 206} \[ -\frac {15 \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{32 \sqrt {2} a^{3/2} d}-\frac {15 \cos (c+d x)}{32 d (a \sin (c+d x)+a)^{3/2}}+\frac {5 \sec (c+d x)}{8 a d \sqrt {a \sin (c+d x)+a}}-\frac {\sec (c+d x)}{4 d (a \sin (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(-15*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(32*Sqrt[2]*a^(3/2)*d) - (15*Cos[c +
d*x])/(32*d*(a + a*Sin[c + d*x])^(3/2)) - Sec[c + d*x]/(4*d*(a + a*Sin[c + d*x])^(3/2)) + (5*Sec[c + d*x])/(8*
a*d*Sqrt[a + a*Sin[c + d*x]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2650

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^n)/(a*
d*(2*n + 1)), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2681

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(b*(g*
Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m)/(a*f*g*(2*m + p + 1)), x] + Dist[(m + p + 1)/(a*(2*m + p + 1)),
Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^
2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] && IntegersQ[2*m, 2*p]

Rule 2687

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> -Simp[(b*(g*
Cos[e + f*x])^(p + 1))/(a*f*g*(p + 1)*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[(a*(2*p + 1))/(2*g^2*(p + 1)), Int[
(g*Cos[e + f*x])^(p + 2)/(a + b*Sin[e + f*x])^(3/2), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0]
&& LtQ[p, -1] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {\sec ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx &=-\frac {\sec (c+d x)}{4 d (a+a \sin (c+d x))^{3/2}}+\frac {5 \int \frac {\sec ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx}{8 a}\\ &=-\frac {\sec (c+d x)}{4 d (a+a \sin (c+d x))^{3/2}}+\frac {5 \sec (c+d x)}{8 a d \sqrt {a+a \sin (c+d x)}}+\frac {15}{16} \int \frac {1}{(a+a \sin (c+d x))^{3/2}} \, dx\\ &=-\frac {15 \cos (c+d x)}{32 d (a+a \sin (c+d x))^{3/2}}-\frac {\sec (c+d x)}{4 d (a+a \sin (c+d x))^{3/2}}+\frac {5 \sec (c+d x)}{8 a d \sqrt {a+a \sin (c+d x)}}+\frac {15 \int \frac {1}{\sqrt {a+a \sin (c+d x)}} \, dx}{64 a}\\ &=-\frac {15 \cos (c+d x)}{32 d (a+a \sin (c+d x))^{3/2}}-\frac {\sec (c+d x)}{4 d (a+a \sin (c+d x))^{3/2}}+\frac {5 \sec (c+d x)}{8 a d \sqrt {a+a \sin (c+d x)}}-\frac {15 \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{32 a d}\\ &=-\frac {15 \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{32 \sqrt {2} a^{3/2} d}-\frac {15 \cos (c+d x)}{32 d (a+a \sin (c+d x))^{3/2}}-\frac {\sec (c+d x)}{4 d (a+a \sin (c+d x))^{3/2}}+\frac {5 \sec (c+d x)}{8 a d \sqrt {a+a \sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.32, size = 224, normalized size = 1.67 \[ \frac {\frac {8 \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )^3}{\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )}-7 \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )^2+14 \sin \left (\frac {1}{2} (c+d x)\right ) \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )+\frac {8 \sin \left (\frac {1}{2} (c+d x)\right )}{\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )}+(15+15 i) (-1)^{3/4} \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )^3 \tanh ^{-1}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \left (\tan \left (\frac {1}{4} (c+d x)\right )-1\right )\right )-4}{32 d (a (\sin (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2/(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(-4 + (8*Sin[(c + d*x)/2])/(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]) + 14*Sin[(c + d*x)/2]*(Cos[(c + d*x)/2] + Sin
[(c + d*x)/2]) - 7*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2 + (15 + 15*I)*(-1)^(3/4)*ArcTanh[(1/2 + I/2)*(-1)^(
3/4)*(-1 + Tan[(c + d*x)/4])]*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3 + (8*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2
])^3)/(Cos[(c + d*x)/2] - Sin[(c + d*x)/2]))/(32*d*(a*(1 + Sin[c + d*x]))^(3/2))

________________________________________________________________________________________

fricas [B]  time = 0.70, size = 240, normalized size = 1.79 \[ \frac {15 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} - 2 \, \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )} + 3 \, a \cos \left (d x + c\right ) - {\left (a \cos \left (d x + c\right ) - 2 \, a\right )} \sin \left (d x + c\right ) + 2 \, a}{\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right ) + 4 \, {\left (15 \, \cos \left (d x + c\right )^{2} - 20 \, \sin \left (d x + c\right ) - 12\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{128 \, {\left (a^{2} d \cos \left (d x + c\right )^{3} - 2 \, a^{2} d \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 2 \, a^{2} d \cos \left (d x + c\right )\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/128*(15*sqrt(2)*(cos(d*x + c)^3 - 2*cos(d*x + c)*sin(d*x + c) - 2*cos(d*x + c))*sqrt(a)*log(-(a*cos(d*x + c)
^2 - 2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - sin(d*x + c) + 1) + 3*a*cos(d*x + c) - (a*cos(
d*x + c) - 2*a)*sin(d*x + c) + 2*a)/(cos(d*x + c)^2 - (cos(d*x + c) + 2)*sin(d*x + c) - cos(d*x + c) - 2)) + 4
*(15*cos(d*x + c)^2 - 20*sin(d*x + c) - 12)*sqrt(a*sin(d*x + c) + a))/(a^2*d*cos(d*x + c)^3 - 2*a^2*d*cos(d*x
+ c)*sin(d*x + c) - 2*a^2*d*cos(d*x + c))

________________________________________________________________________________________

giac [B]  time = 2.65, size = 591, normalized size = 4.41 \[ \frac {\frac {15 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} + \sqrt {a}\right )}}{2 \, \sqrt {-a}}\right )}{\sqrt {-a} a \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )} + \frac {16 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} + \sqrt {a}\right )}}{{\left ({\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 2 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )} \sqrt {a} - a\right )} a \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )} + \frac {2 \, {\left (41 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{7} + 127 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{6} \sqrt {a} + 91 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{5} a - 143 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} a^{\frac {3}{2}} + 3 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{3} a^{2} + 93 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a^{\frac {5}{2}} - 47 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )} a^{3} + 11 \, a^{\frac {7}{2}}\right )}}{{\left ({\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 2 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )} \sqrt {a} - a\right )}^{4} a \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}}{32 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/32*(15*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a) + sqrt
(a))/sqrt(-a))/(sqrt(-a)*a*sgn(tan(1/2*d*x + 1/2*c) + 1)) + 16*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*
d*x + 1/2*c)^2 + a) + sqrt(a))/(((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - 2*(sq
rt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))*sqrt(a) - a)*a*sgn(tan(1/2*d*x + 1/2*c) + 1))
 + 2*(41*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^7 + 127*(sqrt(a)*tan(1/2*d*x + 1/
2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^6*sqrt(a) + 91*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x +
 1/2*c)^2 + a))^5*a - 143*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4*a^(3/2) + 3*(s
qrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^3*a^2 + 93*(sqrt(a)*tan(1/2*d*x + 1/2*c) - s
qrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a^(5/2) - 47*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^
2 + a))*a^3 + 11*a^(7/2))/(((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 2*(sqrt(a)
*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))*sqrt(a) - a)^4*a*sgn(tan(1/2*d*x + 1/2*c) + 1)))/d

________________________________________________________________________________________

maple [A]  time = 0.25, size = 202, normalized size = 1.51 \[ -\frac {\sin \left (d x +c \right ) \left (30 \sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}\, \arctanh \left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a^{2}-40 a^{\frac {5}{2}}\right )+\left (-15 \sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}\, \arctanh \left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a^{2}+30 a^{\frac {5}{2}}\right ) \left (\cos ^{2}\left (d x +c \right )\right )+30 \sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}\, \arctanh \left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a^{2}-24 a^{\frac {5}{2}}}{64 a^{\frac {7}{2}} \left (1+\sin \left (d x +c \right )\right ) \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x)

[Out]

-1/64/a^(7/2)*(sin(d*x+c)*(30*(a-a*sin(d*x+c))^(1/2)*2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2
))*a^2-40*a^(5/2))+(-15*(a-a*sin(d*x+c))^(1/2)*2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a^2
+30*a^(5/2))*cos(d*x+c)^2+30*(a-a*sin(d*x+c))^(1/2)*2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2)
)*a^2-24*a^(5/2))/(1+sin(d*x+c))/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec \left (d x + c\right )^{2}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^2/(a*sin(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\cos \left (c+d\,x\right )}^2\,{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^2*(a + a*sin(c + d*x))^(3/2)),x)

[Out]

int(1/(cos(c + d*x)^2*(a + a*sin(c + d*x))^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec ^{2}{\left (c + d x \right )}}{\left (a \left (\sin {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(a+a*sin(d*x+c))**(3/2),x)

[Out]

Integral(sec(c + d*x)**2/(a*(sin(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________