3.186 \(\int \frac {\cos ^6(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=30 \[ -\frac {2 a \cos ^7(c+d x)}{7 d (a \sin (c+d x)+a)^{7/2}} \]

[Out]

-2/7*a*cos(d*x+c)^7/d/(a+a*sin(d*x+c))^(7/2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 30, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {2673} \[ -\frac {2 a \cos ^7(c+d x)}{7 d (a \sin (c+d x)+a)^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^6/(a + a*Sin[c + d*x])^(5/2),x]

[Out]

(-2*a*Cos[c + d*x]^7)/(7*d*(a + a*Sin[c + d*x])^(7/2))

Rule 2673

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(b*(g*
Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1))/(f*g*(m - 1)), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && Eq
Q[a^2 - b^2, 0] && EqQ[2*m + p - 1, 0] && NeQ[m, 1]

Rubi steps

\begin {align*} \int \frac {\cos ^6(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx &=-\frac {2 a \cos ^7(c+d x)}{7 d (a+a \sin (c+d x))^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 42, normalized size = 1.40 \[ -\frac {2 \cos ^7(c+d x) \sqrt {a (\sin (c+d x)+1)}}{7 a^3 d (\sin (c+d x)+1)^4} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^6/(a + a*Sin[c + d*x])^(5/2),x]

[Out]

(-2*Cos[c + d*x]^7*Sqrt[a*(1 + Sin[c + d*x])])/(7*a^3*d*(1 + Sin[c + d*x])^4)

________________________________________________________________________________________

fricas [B]  time = 0.64, size = 117, normalized size = 3.90 \[ -\frac {2 \, {\left (\cos \left (d x + c\right )^{4} - 3 \, \cos \left (d x + c\right )^{3} - 8 \, \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{3} + 4 \, \cos \left (d x + c\right )^{2} - 4 \, \cos \left (d x + c\right ) - 8\right )} \sin \left (d x + c\right ) + 4 \, \cos \left (d x + c\right ) + 8\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{7 \, {\left (a^{3} d \cos \left (d x + c\right ) + a^{3} d \sin \left (d x + c\right ) + a^{3} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6/(a+a*sin(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-2/7*(cos(d*x + c)^4 - 3*cos(d*x + c)^3 - 8*cos(d*x + c)^2 + (cos(d*x + c)^3 + 4*cos(d*x + c)^2 - 4*cos(d*x +
c) - 8)*sin(d*x + c) + 4*cos(d*x + c) + 8)*sqrt(a*sin(d*x + c) + a)/(a^3*d*cos(d*x + c) + a^3*d*sin(d*x + c) +
 a^3*d)

________________________________________________________________________________________

giac [B]  time = 5.64, size = 255, normalized size = 8.50 \[ \frac {2 \, {\left (\frac {8 \, \sqrt {2} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a^{\frac {5}{2}}} + \frac {{\left ({\left ({\left ({\left ({\left ({\left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )} - \frac {7 \, a}{\mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \frac {21 \, a}{\mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \frac {35 \, a}{\mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \frac {35 \, a}{\mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \frac {21 \, a}{\mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \frac {7 \, a}{\mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \frac {a}{\mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {7}{2}}}\right )}}{7 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6/(a+a*sin(d*x+c))^(5/2),x, algorithm="giac")

[Out]

2/7*(8*sqrt(2)*sgn(tan(1/2*d*x + 1/2*c) + 1)/a^(5/2) + (((((((a*tan(1/2*d*x + 1/2*c)/sgn(tan(1/2*d*x + 1/2*c)
+ 1) - 7*a/sgn(tan(1/2*d*x + 1/2*c) + 1))*tan(1/2*d*x + 1/2*c) + 21*a/sgn(tan(1/2*d*x + 1/2*c) + 1))*tan(1/2*d
*x + 1/2*c) - 35*a/sgn(tan(1/2*d*x + 1/2*c) + 1))*tan(1/2*d*x + 1/2*c) + 35*a/sgn(tan(1/2*d*x + 1/2*c) + 1))*t
an(1/2*d*x + 1/2*c) - 21*a/sgn(tan(1/2*d*x + 1/2*c) + 1))*tan(1/2*d*x + 1/2*c) + 7*a/sgn(tan(1/2*d*x + 1/2*c)
+ 1))*tan(1/2*d*x + 1/2*c) - a/sgn(tan(1/2*d*x + 1/2*c) + 1))/(a*tan(1/2*d*x + 1/2*c)^2 + a)^(7/2))/d

________________________________________________________________________________________

maple [A]  time = 0.16, size = 47, normalized size = 1.57 \[ -\frac {2 \left (1+\sin \left (d x +c \right )\right ) \left (\sin \left (d x +c \right )-1\right )^{4}}{7 a^{2} \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^6/(a+a*sin(d*x+c))^(5/2),x)

[Out]

-2/7/a^2*(1+sin(d*x+c))*(sin(d*x+c)-1)^4/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{6}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6/(a+a*sin(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^6/(a*sin(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \[ \int \frac {{\cos \left (c+d\,x\right )}^6}{{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^6/(a + a*sin(c + d*x))^(5/2),x)

[Out]

int(cos(c + d*x)^6/(a + a*sin(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**6/(a+a*sin(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________