3.190 \(\int \frac {\cos ^2(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=75 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {2} a^{5/2} d}-\frac {\cos (c+d x)}{a d (a \sin (c+d x)+a)^{3/2}} \]

[Out]

-cos(d*x+c)/a/d/(a+a*sin(d*x+c))^(3/2)+1/2*arctanh(1/2*cos(d*x+c)*a^(1/2)*2^(1/2)/(a+a*sin(d*x+c))^(1/2))/a^(5
/2)/d*2^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {2680, 2649, 206} \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {2} a^{5/2} d}-\frac {\cos (c+d x)}{a d (a \sin (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2/(a + a*Sin[c + d*x])^(5/2),x]

[Out]

ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])]/(Sqrt[2]*a^(5/2)*d) - Cos[c + d*x]/(a*d*(a
+ a*Sin[c + d*x])^(3/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2680

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(2*g*(
g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(2*m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(2*m +
 p + 1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, g}, x] && Eq
Q[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] && NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*
p]

Rubi steps

\begin {align*} \int \frac {\cos ^2(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx &=-\frac {\cos (c+d x)}{a d (a+a \sin (c+d x))^{3/2}}-\frac {\int \frac {1}{\sqrt {a+a \sin (c+d x)}} \, dx}{2 a^2}\\ &=-\frac {\cos (c+d x)}{a d (a+a \sin (c+d x))^{3/2}}+\frac {\operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{a^2 d}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{\sqrt {2} a^{5/2} d}-\frac {\cos (c+d x)}{a d (a+a \sin (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.25, size = 100, normalized size = 1.33 \[ \frac {\sec (c+d x) \left (2 (\sin (c+d x)-1)+\sqrt {2-2 \sin (c+d x)} \tanh ^{-1}\left (\frac {\sqrt {1-\sin (c+d x)}}{\sqrt {2}}\right ) \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )^2\right )}{2 a^2 d \sqrt {a (\sin (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2/(a + a*Sin[c + d*x])^(5/2),x]

[Out]

(Sec[c + d*x]*(ArcTanh[Sqrt[1 - Sin[c + d*x]]/Sqrt[2]]*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2*Sqrt[2 - 2*Sin[
c + d*x]] + 2*(-1 + Sin[c + d*x])))/(2*a^2*d*Sqrt[a*(1 + Sin[c + d*x])])

________________________________________________________________________________________

fricas [B]  time = 0.65, size = 252, normalized size = 3.36 \[ \frac {\frac {\sqrt {2} {\left (a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - {\left (a \cos \left (d x + c\right ) + 2 \, a\right )} \sin \left (d x + c\right ) - 2 \, a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + \frac {2 \, \sqrt {2} \sqrt {a \sin \left (d x + c\right ) + a} {\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )}}{\sqrt {a}} + 3 \, \cos \left (d x + c\right ) + 2}{\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right )}{\sqrt {a}} + 4 \, \sqrt {a \sin \left (d x + c\right ) + a} {\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )}}{4 \, {\left (a^{3} d \cos \left (d x + c\right )^{2} - a^{3} d \cos \left (d x + c\right ) - 2 \, a^{3} d - {\left (a^{3} d \cos \left (d x + c\right ) + 2 \, a^{3} d\right )} \sin \left (d x + c\right )\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(a+a*sin(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/4*(sqrt(2)*(a*cos(d*x + c)^2 - a*cos(d*x + c) - (a*cos(d*x + c) + 2*a)*sin(d*x + c) - 2*a)*log(-(cos(d*x + c
)^2 - (cos(d*x + c) - 2)*sin(d*x + c) + 2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*(cos(d*x + c) - sin(d*x + c) + 1)/s
qrt(a) + 3*cos(d*x + c) + 2)/(cos(d*x + c)^2 - (cos(d*x + c) + 2)*sin(d*x + c) - cos(d*x + c) - 2))/sqrt(a) +
4*sqrt(a*sin(d*x + c) + a)*(cos(d*x + c) - sin(d*x + c) + 1))/(a^3*d*cos(d*x + c)^2 - a^3*d*cos(d*x + c) - 2*a
^3*d - (a^3*d*cos(d*x + c) + 2*a^3*d)*sin(d*x + c))

________________________________________________________________________________________

giac [B]  time = 1.63, size = 293, normalized size = 3.91 \[ -\frac {\frac {\sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} + \sqrt {a}\right )}}{2 \, \sqrt {-a}}\right )}{\sqrt {-a} a^{2} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )} - \frac {2 \, {\left (3 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{3} + {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} \sqrt {a} - {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )} a + a^{\frac {3}{2}}\right )}}{{\left ({\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 2 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )} \sqrt {a} - a\right )}^{2} a^{2} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(a+a*sin(d*x+c))^(5/2),x, algorithm="giac")

[Out]

-(sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a) + sqrt(a))/sq
rt(-a))/(sqrt(-a)*a^2*sgn(tan(1/2*d*x + 1/2*c) + 1)) - 2*(3*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x
 + 1/2*c)^2 + a))^3 + (sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*sqrt(a) - (sqrt(a)
*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))*a + a^(3/2))/(((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqr
t(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))*sqr
t(a) - a)^2*a^2*sgn(tan(1/2*d*x + 1/2*c) + 1)))/d

________________________________________________________________________________________

maple [A]  time = 0.21, size = 123, normalized size = 1.64 \[ -\frac {\left (-\sqrt {2}\, \arctanh \left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a \sin \left (d x +c \right )-\sqrt {2}\, \arctanh \left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a +2 \sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {a}\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}}{2 a^{\frac {7}{2}} \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2/(a+a*sin(d*x+c))^(5/2),x)

[Out]

-1/2/a^(7/2)*(-2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a*sin(d*x+c)-2^(1/2)*arctanh(1/2*(a
-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a+2*(a-a*sin(d*x+c))^(1/2)*a^(1/2))*(-a*(sin(d*x+c)-1))^(1/2)/cos(d*x+c)
/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{2}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(a+a*sin(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^2/(a*sin(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\cos \left (c+d\,x\right )}^2}{{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^2/(a + a*sin(c + d*x))^(5/2),x)

[Out]

int(cos(c + d*x)^2/(a + a*sin(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos ^{2}{\left (c + d x \right )}}{\left (a \left (\sin {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2/(a+a*sin(d*x+c))**(5/2),x)

[Out]

Integral(cos(c + d*x)**2/(a*(sin(c + d*x) + 1))**(5/2), x)

________________________________________________________________________________________