3.241 \(\int \frac {1}{(e \cos (c+d x))^{5/2} (a+a \sin (c+d x))} \, dx\)

Optimal. Leaf size=112 \[ \frac {10 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 a d e^2 \sqrt {e \cos (c+d x)}}+\frac {10 \sin (c+d x)}{21 a d e (e \cos (c+d x))^{3/2}}-\frac {2}{7 d e (a \sin (c+d x)+a) (e \cos (c+d x))^{3/2}} \]

[Out]

10/21*sin(d*x+c)/a/d/e/(e*cos(d*x+c))^(3/2)-2/7/d/e/(e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c))+10/21*(cos(1/2*d*x+1
/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)/a/d/e^2/(e*cos(d*x+c)
)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 112, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {2683, 2636, 2642, 2641} \[ \frac {10 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 a d e^2 \sqrt {e \cos (c+d x)}}+\frac {10 \sin (c+d x)}{21 a d e (e \cos (c+d x))^{3/2}}-\frac {2}{7 d e (a \sin (c+d x)+a) (e \cos (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/((e*Cos[c + d*x])^(5/2)*(a + a*Sin[c + d*x])),x]

[Out]

(10*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(21*a*d*e^2*Sqrt[e*Cos[c + d*x]]) + (10*Sin[c + d*x])/(21*a*
d*e*(e*Cos[c + d*x])^(3/2)) - 2/(7*d*e*(e*Cos[c + d*x])^(3/2)*(a + a*Sin[c + d*x]))

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2683

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*(g*Cos[e
 + f*x])^(p + 1))/(a*f*g*(p - 1)*(a + b*Sin[e + f*x])), x] + Dist[p/(a*(p - 1)), Int[(g*Cos[e + f*x])^p, x], x
] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] &&  !GeQ[p, 1] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {1}{(e \cos (c+d x))^{5/2} (a+a \sin (c+d x))} \, dx &=-\frac {2}{7 d e (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))}+\frac {5 \int \frac {1}{(e \cos (c+d x))^{5/2}} \, dx}{7 a}\\ &=\frac {10 \sin (c+d x)}{21 a d e (e \cos (c+d x))^{3/2}}-\frac {2}{7 d e (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))}+\frac {5 \int \frac {1}{\sqrt {e \cos (c+d x)}} \, dx}{21 a e^2}\\ &=\frac {10 \sin (c+d x)}{21 a d e (e \cos (c+d x))^{3/2}}-\frac {2}{7 d e (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))}+\frac {\left (5 \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{21 a e^2 \sqrt {e \cos (c+d x)}}\\ &=\frac {10 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 a d e^2 \sqrt {e \cos (c+d x)}}+\frac {10 \sin (c+d x)}{21 a d e (e \cos (c+d x))^{3/2}}-\frac {2}{7 d e (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.08, size = 66, normalized size = 0.59 \[ \frac {(\sin (c+d x)+1)^{3/4} \, _2F_1\left (-\frac {3}{4},\frac {11}{4};\frac {1}{4};\frac {1}{2} (1-\sin (c+d x))\right )}{3\ 2^{3/4} a d e (e \cos (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((e*Cos[c + d*x])^(5/2)*(a + a*Sin[c + d*x])),x]

[Out]

(Hypergeometric2F1[-3/4, 11/4, 1/4, (1 - Sin[c + d*x])/2]*(1 + Sin[c + d*x])^(3/4))/(3*2^(3/4)*a*d*e*(e*Cos[c
+ d*x])^(3/2))

________________________________________________________________________________________

fricas [F]  time = 0.88, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {e \cos \left (d x + c\right )}}{a e^{3} \cos \left (d x + c\right )^{3} \sin \left (d x + c\right ) + a e^{3} \cos \left (d x + c\right )^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

integral(sqrt(e*cos(d*x + c))/(a*e^3*cos(d*x + c)^3*sin(d*x + c) + a*e^3*cos(d*x + c)^3), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (e \cos \left (d x + c\right )\right )^{\frac {5}{2}} {\left (a \sin \left (d x + c\right ) + a\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

integrate(1/((e*cos(d*x + c))^(5/2)*(a*sin(d*x + c) + a)), x)

________________________________________________________________________________________

maple [B]  time = 2.25, size = 375, normalized size = 3.35 \[ -\frac {2 \left (40 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-60 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+40 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+30 \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-40 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}+16 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 \left (8 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) a \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e +e}\, e^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c)),x)

[Out]

-2/21/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/a/sin(1/2*d*x+1/2*c)/(-2*sin(1
/2*d*x+1/2*c)^2*e+e)^(1/2)/e^2*(40*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin
(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^6-60*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c)
,2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4+40*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+30*Elli
pticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/
2*c)^2-40*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),
2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)+16*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*sin(1/2*d*x+1/2*c))/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (e \cos \left (d x + c\right )\right )^{\frac {5}{2}} {\left (a \sin \left (d x + c\right ) + a\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

integrate(1/((e*cos(d*x + c))^(5/2)*(a*sin(d*x + c) + a)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\left (e\,\cos \left (c+d\,x\right )\right )}^{5/2}\,\left (a+a\,\sin \left (c+d\,x\right )\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((e*cos(c + d*x))^(5/2)*(a + a*sin(c + d*x))),x)

[Out]

int(1/((e*cos(c + d*x))^(5/2)*(a + a*sin(c + d*x))), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))**(5/2)/(a+a*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________