3.275 \(\int \frac {\sqrt {a+a \sin (c+d x)}}{\sqrt {e \cos (c+d x)}} \, dx\)

Optimal. Leaf size=161 \[ \frac {2 \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \tan ^{-1}\left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {\cos (c+d x)+1} \sqrt {e \cos (c+d x)}}\right )}{d \sqrt {e} (\sin (c+d x)+\cos (c+d x)+1)}-\frac {2 \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \sinh ^{-1}\left (\frac {\sqrt {e \cos (c+d x)}}{\sqrt {e}}\right )}{d \sqrt {e} (\sin (c+d x)+\cos (c+d x)+1)} \]

[Out]

-2*arcsinh((e*cos(d*x+c))^(1/2)/e^(1/2))*(1+cos(d*x+c))^(1/2)*(a+a*sin(d*x+c))^(1/2)/d/(1+cos(d*x+c)+sin(d*x+c
))/e^(1/2)+2*arctan(sin(d*x+c)*e^(1/2)/(e*cos(d*x+c))^(1/2)/(1+cos(d*x+c))^(1/2))*(1+cos(d*x+c))^(1/2)*(a+a*si
n(d*x+c))^(1/2)/d/(1+cos(d*x+c)+sin(d*x+c))/e^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.21, antiderivative size = 161, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {2677, 2775, 203, 2833, 63, 215} \[ \frac {2 \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \tan ^{-1}\left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {\cos (c+d x)+1} \sqrt {e \cos (c+d x)}}\right )}{d \sqrt {e} (\sin (c+d x)+\cos (c+d x)+1)}-\frac {2 \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \sinh ^{-1}\left (\frac {\sqrt {e \cos (c+d x)}}{\sqrt {e}}\right )}{d \sqrt {e} (\sin (c+d x)+\cos (c+d x)+1)} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Sin[c + d*x]]/Sqrt[e*Cos[c + d*x]],x]

[Out]

(-2*ArcSinh[Sqrt[e*Cos[c + d*x]]/Sqrt[e]]*Sqrt[1 + Cos[c + d*x]]*Sqrt[a + a*Sin[c + d*x]])/(d*Sqrt[e]*(1 + Cos
[c + d*x] + Sin[c + d*x])) + (2*ArcTan[(Sqrt[e]*Sin[c + d*x])/(Sqrt[e*Cos[c + d*x]]*Sqrt[1 + Cos[c + d*x]])]*S
qrt[1 + Cos[c + d*x]]*Sqrt[a + a*Sin[c + d*x]])/(d*Sqrt[e]*(1 + Cos[c + d*x] + Sin[c + d*x]))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 2677

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)], x_Symbol] :> Dist[(a*Sqrt[
1 + Cos[e + f*x]]*Sqrt[a + b*Sin[e + f*x]])/(a + a*Cos[e + f*x] + b*Sin[e + f*x]), Int[Sqrt[1 + Cos[e + f*x]]/
Sqrt[g*Cos[e + f*x]], x], x] + Dist[(b*Sqrt[1 + Cos[e + f*x]]*Sqrt[a + b*Sin[e + f*x]])/(a + a*Cos[e + f*x] +
b*Sin[e + f*x]), Int[Sin[e + f*x]/(Sqrt[g*Cos[e + f*x]]*Sqrt[1 + Cos[e + f*x]]), x], x] /; FreeQ[{a, b, e, f,
g}, x] && EqQ[a^2 - b^2, 0]

Rule 2775

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*b)/f, Subst[Int[1/(b + d*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])
], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2833

Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_.), x_Symbol] :> Dist[1/(b*f), Subst[Int[(a + x)^m*(c + (d*x)/b)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[
{a, b, c, d, e, f, m, n}, x]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+a \sin (c+d x)}}{\sqrt {e \cos (c+d x)}} \, dx &=\frac {\left (a \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}\right ) \int \frac {\sqrt {1+\cos (c+d x)}}{\sqrt {e \cos (c+d x)}} \, dx}{a+a \cos (c+d x)+a \sin (c+d x)}+\frac {\left (a \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}\right ) \int \frac {\sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {1+\cos (c+d x)}} \, dx}{a+a \cos (c+d x)+a \sin (c+d x)}\\ &=-\frac {\left (a \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {e x} \sqrt {1+x}} \, dx,x,\cos (c+d x)\right )}{d (a+a \cos (c+d x)+a \sin (c+d x))}-\frac {\left (2 a \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{1+e x^2} \, dx,x,-\frac {\sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {1+\cos (c+d x)}}\right )}{d (a+a \cos (c+d x)+a \sin (c+d x))}\\ &=\frac {2 \tan ^{-1}\left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {1+\cos (c+d x)}}\right ) \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}}{d \sqrt {e} (1+\cos (c+d x)+\sin (c+d x))}-\frac {\left (2 a \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{e}}} \, dx,x,\sqrt {e \cos (c+d x)}\right )}{d e (a+a \cos (c+d x)+a \sin (c+d x))}\\ &=-\frac {2 \sinh ^{-1}\left (\frac {\sqrt {e \cos (c+d x)}}{\sqrt {e}}\right ) \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}}{d \sqrt {e} (1+\cos (c+d x)+\sin (c+d x))}+\frac {2 \tan ^{-1}\left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {1+\cos (c+d x)}}\right ) \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}}{d \sqrt {e} (1+\cos (c+d x)+\sin (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.47, size = 108, normalized size = 0.67 \[ \frac {\sqrt {1+e^{2 i (c+d x)}} \sqrt {a (\sin (c+d x)+1)} \left (i \log \left (1+\sqrt {1+e^{2 i (c+d x)}}\right )-\sinh ^{-1}\left (e^{i (c+d x)}\right )+d x\right )}{d \left (1-i e^{i (c+d x)}\right ) \sqrt {e \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Sin[c + d*x]]/Sqrt[e*Cos[c + d*x]],x]

[Out]

(Sqrt[1 + E^((2*I)*(c + d*x))]*(d*x - ArcSinh[E^(I*(c + d*x))] + I*Log[1 + Sqrt[1 + E^((2*I)*(c + d*x))]])*Sqr
t[a*(1 + Sin[c + d*x])])/(d*(1 - I*E^(I*(c + d*x)))*Sqrt[e*Cos[c + d*x]])

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^(1/2)/(e*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a \sin \left (d x + c\right ) + a}}{\sqrt {e \cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^(1/2)/(e*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*sin(d*x + c) + a)/sqrt(e*cos(d*x + c)), x)

________________________________________________________________________________________

maple [A]  time = 0.19, size = 142, normalized size = 0.88 \[ -\frac {\left (\arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right )-\arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right )\right ) \sqrt {a \left (1+\sin \left (d x +c \right )\right )}\, \left (-1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{d \sin \left (d x +c \right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {e \cos \left (d x +c \right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(d*x+c))^(1/2)/(e*cos(d*x+c))^(1/2),x)

[Out]

-1/d*(arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))-arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2
)*sin(d*x+c)/cos(d*x+c)*2^(1/2)))*(a*(1+sin(d*x+c)))^(1/2)*(-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c
)/(1+cos(d*x+c)))^(1/2)/(e*cos(d*x+c))^(1/2)*2^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a \sin \left (d x + c\right ) + a}}{\sqrt {e \cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^(1/2)/(e*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(d*x + c) + a)/sqrt(e*cos(d*x + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {a+a\,\sin \left (c+d\,x\right )}}{\sqrt {e\,\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(c + d*x))^(1/2)/(e*cos(c + d*x))^(1/2),x)

[Out]

int((a + a*sin(c + d*x))^(1/2)/(e*cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a \left (\sin {\left (c + d x \right )} + 1\right )}}{\sqrt {e \cos {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))**(1/2)/(e*cos(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a*(sin(c + d*x) + 1))/sqrt(e*cos(c + d*x)), x)

________________________________________________________________________________________