3.302 \(\int \frac {1}{(e \cos (c+d x))^{3/2} \sqrt {a+a \sin (c+d x)}} \, dx\)

Optimal. Leaf size=76 \[ \frac {4 \sqrt {a \sin (c+d x)+a}}{3 a d e \sqrt {e \cos (c+d x)}}-\frac {2}{3 d e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}} \]

[Out]

-2/3/d/e/(e*cos(d*x+c))^(1/2)/(a+a*sin(d*x+c))^(1/2)+4/3*(a+a*sin(d*x+c))^(1/2)/a/d/e/(e*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 76, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {2672, 2671} \[ \frac {4 \sqrt {a \sin (c+d x)+a}}{3 a d e \sqrt {e \cos (c+d x)}}-\frac {2}{3 d e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/((e*Cos[c + d*x])^(3/2)*Sqrt[a + a*Sin[c + d*x]]),x]

[Out]

-2/(3*d*e*Sqrt[e*Cos[c + d*x]]*Sqrt[a + a*Sin[c + d*x]]) + (4*Sqrt[a + a*Sin[c + d*x]])/(3*a*d*e*Sqrt[e*Cos[c
+ d*x]])

Rule 2671

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(b*(g*
Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m)/(a*f*g*m), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^
2, 0] && EqQ[Simplify[m + p + 1], 0] &&  !ILtQ[p, 0]

Rule 2672

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(b*(g*
Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m)/(a*f*g*Simplify[2*m + p + 1]), x] + Dist[Simplify[m + p + 1]/(a*
Simplify[2*m + p + 1]), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g, m
, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[Simplify[m + p + 1], 0] && NeQ[2*m + p + 1, 0] &&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {1}{(e \cos (c+d x))^{3/2} \sqrt {a+a \sin (c+d x)}} \, dx &=-\frac {2}{3 d e \sqrt {e \cos (c+d x)} \sqrt {a+a \sin (c+d x)}}+\frac {2 \int \frac {\sqrt {a+a \sin (c+d x)}}{(e \cos (c+d x))^{3/2}} \, dx}{3 a}\\ &=-\frac {2}{3 d e \sqrt {e \cos (c+d x)} \sqrt {a+a \sin (c+d x)}}+\frac {4 \sqrt {a+a \sin (c+d x)}}{3 a d e \sqrt {e \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 46, normalized size = 0.61 \[ \frac {2 (2 \sin (c+d x)+1)}{3 d e \sqrt {a (\sin (c+d x)+1)} \sqrt {e \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((e*Cos[c + d*x])^(3/2)*Sqrt[a + a*Sin[c + d*x]]),x]

[Out]

(2*(1 + 2*Sin[c + d*x]))/(3*d*e*Sqrt[e*Cos[c + d*x]]*Sqrt[a*(1 + Sin[c + d*x])])

________________________________________________________________________________________

fricas [A]  time = 0.74, size = 67, normalized size = 0.88 \[ \frac {2 \, \sqrt {e \cos \left (d x + c\right )} \sqrt {a \sin \left (d x + c\right ) + a} {\left (2 \, \sin \left (d x + c\right ) + 1\right )}}{3 \, {\left (a d e^{2} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a d e^{2} \cos \left (d x + c\right )\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

2/3*sqrt(e*cos(d*x + c))*sqrt(a*sin(d*x + c) + a)*(2*sin(d*x + c) + 1)/(a*d*e^2*cos(d*x + c)*sin(d*x + c) + a*
d*e^2*cos(d*x + c))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (e \cos \left (d x + c\right )\right )^{\frac {3}{2}} \sqrt {a \sin \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/((e*cos(d*x + c))^(3/2)*sqrt(a*sin(d*x + c) + a)), x)

________________________________________________________________________________________

maple [A]  time = 0.18, size = 44, normalized size = 0.58 \[ \frac {2 \left (2 \sin \left (d x +c \right )+1\right ) \cos \left (d x +c \right )}{3 d \left (e \cos \left (d x +c \right )\right )^{\frac {3}{2}} \sqrt {a \left (1+\sin \left (d x +c \right )\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c))^(1/2),x)

[Out]

2/3/d*(2*sin(d*x+c)+1)*cos(d*x+c)/(e*cos(d*x+c))^(3/2)/(a*(1+sin(d*x+c)))^(1/2)

________________________________________________________________________________________

maxima [B]  time = 1.03, size = 210, normalized size = 2.76 \[ \frac {2 \, {\left (\sqrt {a} \sqrt {e} + \frac {4 \, \sqrt {a} \sqrt {e} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {4 \, \sqrt {a} \sqrt {e} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {\sqrt {a} \sqrt {e} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}\right )} {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{2}}{3 \, {\left (a e^{2} + \frac {2 \, a e^{2} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {a e^{2} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}\right )} d {\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {5}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

2/3*(sqrt(a)*sqrt(e) + 4*sqrt(a)*sqrt(e)*sin(d*x + c)/(cos(d*x + c) + 1) - 4*sqrt(a)*sqrt(e)*sin(d*x + c)^3/(c
os(d*x + c) + 1)^3 - sqrt(a)*sqrt(e)*sin(d*x + c)^4/(cos(d*x + c) + 1)^4)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2
 + 1)^2/((a*e^2 + 2*a*e^2*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + a*e^2*sin(d*x + c)^4/(cos(d*x + c) + 1)^4)*d*(
sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(5/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(3/2))

________________________________________________________________________________________

mupad [B]  time = 6.01, size = 77, normalized size = 1.01 \[ \frac {4\,\sqrt {a\,\left (\sin \left (c+d\,x\right )+1\right )}\,\left (3\,\sin \left (c+d\,x\right )-\cos \left (2\,c+2\,d\,x\right )+2\right )}{3\,a\,d\,e\,\sqrt {e\,\cos \left (c+d\,x\right )}\,\left (4\,\sin \left (c+d\,x\right )-\cos \left (2\,c+2\,d\,x\right )+3\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((e*cos(c + d*x))^(3/2)*(a + a*sin(c + d*x))^(1/2)),x)

[Out]

(4*(a*(sin(c + d*x) + 1))^(1/2)*(3*sin(c + d*x) - cos(2*c + 2*d*x) + 2))/(3*a*d*e*(e*cos(c + d*x))^(1/2)*(4*si
n(c + d*x) - cos(2*c + 2*d*x) + 3))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {a \left (\sin {\left (c + d x \right )} + 1\right )} \left (e \cos {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))**(3/2)/(a+a*sin(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(a*(sin(c + d*x) + 1))*(e*cos(c + d*x))**(3/2)), x)

________________________________________________________________________________________