3.340 \(\int \frac {(e \cos (c+d x))^p}{(a+a \sin (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=102 \[ -\frac {2^{\frac {p}{2}-1} (\sin (c+d x)+1)^{1-\frac {p}{2}} (e \cos (c+d x))^{p+1} \, _2F_1\left (\frac {4-p}{2},\frac {p+1}{2};\frac {p+3}{2};\frac {1}{2} (1-\sin (c+d x))\right )}{d e (p+1) (a \sin (c+d x)+a)^{3/2}} \]

[Out]

-2^(-1+1/2*p)*(e*cos(d*x+c))^(1+p)*hypergeom([2-1/2*p, 1/2+1/2*p],[3/2+1/2*p],1/2-1/2*sin(d*x+c))*(1+sin(d*x+c
))^(1-1/2*p)/d/e/(1+p)/(a+a*sin(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 102, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {2689, 70, 69} \[ -\frac {2^{\frac {p}{2}-1} (\sin (c+d x)+1)^{1-\frac {p}{2}} (e \cos (c+d x))^{p+1} \, _2F_1\left (\frac {4-p}{2},\frac {p+1}{2};\frac {p+3}{2};\frac {1}{2} (1-\sin (c+d x))\right )}{d e (p+1) (a \sin (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(e*Cos[c + d*x])^p/(a + a*Sin[c + d*x])^(3/2),x]

[Out]

-((2^(-1 + p/2)*(e*Cos[c + d*x])^(1 + p)*Hypergeometric2F1[(4 - p)/2, (1 + p)/2, (3 + p)/2, (1 - Sin[c + d*x])
/2]*(1 + Sin[c + d*x])^(1 - p/2))/(d*e*(1 + p)*(a + a*Sin[c + d*x])^(3/2)))

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*((b*(c + d*x))/(b*c - a*d))^FracPart[n]), Int[(a + b*x)^m*Simp[(b*c)/(b*c - a*d) + (b*d*x)/(b*c -
 a*d), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 2689

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[(a^2*
(g*Cos[e + f*x])^(p + 1))/(f*g*(a + b*Sin[e + f*x])^((p + 1)/2)*(a - b*Sin[e + f*x])^((p + 1)/2)), Subst[Int[(
a + b*x)^(m + (p - 1)/2)*(a - b*x)^((p - 1)/2), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&
 EqQ[a^2 - b^2, 0] &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {(e \cos (c+d x))^p}{(a+a \sin (c+d x))^{3/2}} \, dx &=\frac {\left (a^2 (e \cos (c+d x))^{1+p} (a-a \sin (c+d x))^{\frac {1}{2} (-1-p)} (a+a \sin (c+d x))^{\frac {1}{2} (-1-p)}\right ) \operatorname {Subst}\left (\int (a-a x)^{\frac {1}{2} (-1+p)} (a+a x)^{-\frac {3}{2}+\frac {1}{2} (-1+p)} \, dx,x,\sin (c+d x)\right )}{d e}\\ &=\frac {\left (2^{-2+\frac {p}{2}} a (e \cos (c+d x))^{1+p} (a-a \sin (c+d x))^{\frac {1}{2} (-1-p)} (a+a \sin (c+d x))^{-1+\frac {1}{2} (-1-p)+\frac {p}{2}} \left (\frac {a+a \sin (c+d x)}{a}\right )^{1-\frac {p}{2}}\right ) \operatorname {Subst}\left (\int \left (\frac {1}{2}+\frac {x}{2}\right )^{-\frac {3}{2}+\frac {1}{2} (-1+p)} (a-a x)^{\frac {1}{2} (-1+p)} \, dx,x,\sin (c+d x)\right )}{d e}\\ &=-\frac {2^{-1+\frac {p}{2}} (e \cos (c+d x))^{1+p} \, _2F_1\left (\frac {4-p}{2},\frac {1+p}{2};\frac {3+p}{2};\frac {1}{2} (1-\sin (c+d x))\right ) (1+\sin (c+d x))^{1-\frac {p}{2}}}{d e (1+p) (a+a \sin (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 101, normalized size = 0.99 \[ -\frac {2^{\frac {p}{2}-1} \cos (c+d x) (\sin (c+d x)+1)^{1-\frac {p}{2}} (e \cos (c+d x))^p \, _2F_1\left (2-\frac {p}{2},\frac {p+1}{2};\frac {p+3}{2};\frac {1}{2} (1-\sin (c+d x))\right )}{d (p+1) (a (\sin (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*Cos[c + d*x])^p/(a + a*Sin[c + d*x])^(3/2),x]

[Out]

-((2^(-1 + p/2)*Cos[c + d*x]*(e*Cos[c + d*x])^p*Hypergeometric2F1[2 - p/2, (1 + p)/2, (3 + p)/2, (1 - Sin[c +
d*x])/2]*(1 + Sin[c + d*x])^(1 - p/2))/(d*(1 + p)*(a*(1 + Sin[c + d*x]))^(3/2)))

________________________________________________________________________________________

fricas [F]  time = 0.44, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {a \sin \left (d x + c\right ) + a} \left (e \cos \left (d x + c\right )\right )^{p}}{a^{2} \cos \left (d x + c\right )^{2} - 2 \, a^{2} \sin \left (d x + c\right ) - 2 \, a^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^p/(a+a*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral(-sqrt(a*sin(d*x + c) + a)*(e*cos(d*x + c))^p/(a^2*cos(d*x + c)^2 - 2*a^2*sin(d*x + c) - 2*a^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \cos \left (d x + c\right )\right )^{p}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^p/(a+a*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((e*cos(d*x + c))^p/(a*sin(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

maple [F]  time = 0.17, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \cos \left (d x +c \right )\right )^{p}}{\left (a +a \sin \left (d x +c \right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(d*x+c))^p/(a+a*sin(d*x+c))^(3/2),x)

[Out]

int((e*cos(d*x+c))^p/(a+a*sin(d*x+c))^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \cos \left (d x + c\right )\right )^{p}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^p/(a+a*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((e*cos(d*x + c))^p/(a*sin(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (e\,\cos \left (c+d\,x\right )\right )}^p}{{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(c + d*x))^p/(a + a*sin(c + d*x))^(3/2),x)

[Out]

int((e*cos(c + d*x))^p/(a + a*sin(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \cos {\left (c + d x \right )}\right )^{p}}{\left (a \left (\sin {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))**p/(a+a*sin(d*x+c))**(3/2),x)

[Out]

Integral((e*cos(c + d*x))**p/(a*(sin(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________