3.374 \(\int (e \cos (c+d x))^{-2 m} (a+a \sin (c+d x))^m \, dx\)

Optimal. Leaf size=86 \[ \frac {2^{\frac {1}{2}-m} (1-\sin (c+d x))^{m-\frac {1}{2}} (a \sin (c+d x)+a)^m (e \cos (c+d x))^{1-2 m} \, _2F_1\left (\frac {1}{2},\frac {1}{2} (2 m+1);\frac {3}{2};\frac {1}{2} (\sin (c+d x)+1)\right )}{d e} \]

[Out]

2^(1/2-m)*(e*cos(d*x+c))^(1-2*m)*hypergeom([1/2, 1/2+m],[3/2],1/2+1/2*sin(d*x+c))*(1-sin(d*x+c))^(-1/2+m)*(a+a
*sin(d*x+c))^m/d/e

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {2689, 7, 70, 69} \[ \frac {2^{\frac {1}{2}-m} (1-\sin (c+d x))^{m-\frac {1}{2}} (a \sin (c+d x)+a)^m (e \cos (c+d x))^{1-2 m} \, _2F_1\left (\frac {1}{2},\frac {1}{2} (2 m+1);\frac {3}{2};\frac {1}{2} (\sin (c+d x)+1)\right )}{d e} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[c + d*x])^m/(e*Cos[c + d*x])^(2*m),x]

[Out]

(2^(1/2 - m)*(e*Cos[c + d*x])^(1 - 2*m)*Hypergeometric2F1[1/2, (1 + 2*m)/2, 3/2, (1 + Sin[c + d*x])/2]*(1 - Si
n[c + d*x])^(-1/2 + m)*(a + a*Sin[c + d*x])^m)/(d*e)

Rule 7

Int[(u_.)*(Px_)^(p_), x_Symbol] :> Int[u*Px^Simplify[p], x] /; PolyQ[Px, x] &&  !RationalQ[p] && FreeQ[p, x] &
& RationalQ[Simplify[p]]

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*((b*(c + d*x))/(b*c - a*d))^FracPart[n]), Int[(a + b*x)^m*Simp[(b*c)/(b*c - a*d) + (b*d*x)/(b*c -
 a*d), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 2689

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[(a^2*
(g*Cos[e + f*x])^(p + 1))/(f*g*(a + b*Sin[e + f*x])^((p + 1)/2)*(a - b*Sin[e + f*x])^((p + 1)/2)), Subst[Int[(
a + b*x)^(m + (p - 1)/2)*(a - b*x)^((p - 1)/2), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&
 EqQ[a^2 - b^2, 0] &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int (e \cos (c+d x))^{-2 m} (a+a \sin (c+d x))^m \, dx &=\frac {\left (a^2 (e \cos (c+d x))^{1-2 m} (a-a \sin (c+d x))^{\frac {1}{2} (-1+2 m)} (a+a \sin (c+d x))^{\frac {1}{2} (-1+2 m)}\right ) \operatorname {Subst}\left (\int (a-a x)^{\frac {1}{2} (-1-2 m)} (a+a x)^{\frac {1}{2} (-1-2 m)+m} \, dx,x,\sin (c+d x)\right )}{d e}\\ &=\frac {\left (a^2 (e \cos (c+d x))^{1-2 m} (a-a \sin (c+d x))^{\frac {1}{2} (-1+2 m)} (a+a \sin (c+d x))^{\frac {1}{2} (-1+2 m)}\right ) \operatorname {Subst}\left (\int \frac {(a-a x)^{\frac {1}{2} (-1-2 m)}}{\sqrt {a+a x}} \, dx,x,\sin (c+d x)\right )}{d e}\\ &=\frac {\left (2^{-\frac {1}{2}-m} a^2 (e \cos (c+d x))^{1-2 m} (a-a \sin (c+d x))^{-\frac {1}{2}-m+\frac {1}{2} (-1+2 m)} \left (\frac {a-a \sin (c+d x)}{a}\right )^{\frac {1}{2}+m} (a+a \sin (c+d x))^{\frac {1}{2} (-1+2 m)}\right ) \operatorname {Subst}\left (\int \frac {\left (\frac {1}{2}-\frac {x}{2}\right )^{\frac {1}{2} (-1-2 m)}}{\sqrt {a+a x}} \, dx,x,\sin (c+d x)\right )}{d e}\\ &=\frac {2^{\frac {1}{2}-m} (e \cos (c+d x))^{1-2 m} \, _2F_1\left (\frac {1}{2},\frac {1}{2} (1+2 m);\frac {3}{2};\frac {1}{2} (1+\sin (c+d x))\right ) (1-\sin (c+d x))^{-\frac {1}{2}+m} (a+a \sin (c+d x))^m}{d e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 90, normalized size = 1.05 \[ \frac {\sqrt {2} \cos (c+d x) (a (\sin (c+d x)+1))^m (e \cos (c+d x))^{-2 m} \, _2F_1\left (\frac {1}{2},\frac {1}{2}-m;\frac {3}{2}-m;\frac {1}{2} (1-\sin (c+d x))\right )}{d (2 m-1) \sqrt {\sin (c+d x)+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sin[c + d*x])^m/(e*Cos[c + d*x])^(2*m),x]

[Out]

(Sqrt[2]*Cos[c + d*x]*Hypergeometric2F1[1/2, 1/2 - m, 3/2 - m, (1 - Sin[c + d*x])/2]*(a*(1 + Sin[c + d*x]))^m)
/(d*(-1 + 2*m)*(e*Cos[c + d*x])^(2*m)*Sqrt[1 + Sin[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 0.47, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (a \sin \left (d x + c\right ) + a\right )}^{m}}{\left (e \cos \left (d x + c\right )\right )^{2 \, m}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^m/((e*cos(d*x+c))^(2*m)),x, algorithm="fricas")

[Out]

integral((a*sin(d*x + c) + a)^m/(e*cos(d*x + c))^(2*m), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a \sin \left (d x + c\right ) + a\right )}^{m}}{\left (e \cos \left (d x + c\right )\right )^{2 \, m}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^m/((e*cos(d*x+c))^(2*m)),x, algorithm="giac")

[Out]

integrate((a*sin(d*x + c) + a)^m/(e*cos(d*x + c))^(2*m), x)

________________________________________________________________________________________

maple [F]  time = 0.75, size = 0, normalized size = 0.00 \[ \int \left (a +a \sin \left (d x +c \right )\right )^{m} \left (e \cos \left (d x +c \right )\right )^{-2 m}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(d*x+c))^m/((e*cos(d*x+c))^(2*m)),x)

[Out]

int((a+a*sin(d*x+c))^m/((e*cos(d*x+c))^(2*m)),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a \sin \left (d x + c\right ) + a\right )}^{m}}{\left (e \cos \left (d x + c\right )\right )^{2 \, m}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^m/((e*cos(d*x+c))^(2*m)),x, algorithm="maxima")

[Out]

integrate((a*sin(d*x + c) + a)^m/(e*cos(d*x + c))^(2*m), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (a+a\,\sin \left (c+d\,x\right )\right )}^m}{{\left (e\,\cos \left (c+d\,x\right )\right )}^{2\,m}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(c + d*x))^m/(e*cos(c + d*x))^(2*m),x)

[Out]

int((a + a*sin(c + d*x))^m/(e*cos(c + d*x))^(2*m), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a \left (\sin {\left (c + d x \right )} + 1\right )\right )^{m} \left (e \cos {\left (c + d x \right )}\right )^{- 2 m}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))**m/((e*cos(d*x+c))**(2*m)),x)

[Out]

Integral((a*(sin(c + d*x) + 1))**m*(e*cos(c + d*x))**(-2*m), x)

________________________________________________________________________________________