3.456 \(\int \frac {\cos ^6(c+d x)}{(a+b \sin (c+d x))^3} \, dx\)

Optimal. Leaf size=197 \[ \frac {5 a x \left (4 a^2-3 b^2\right )}{2 b^6}+\frac {5 \cos (c+d x) \left (4 a^2-2 a b \sin (c+d x)-b^2\right )}{2 b^5 d}-\frac {5 \left (4 a^4-5 a^2 b^2+b^4\right ) \tan ^{-1}\left (\frac {a \tan \left (\frac {1}{2} (c+d x)\right )+b}{\sqrt {a^2-b^2}}\right )}{b^6 d \sqrt {a^2-b^2}}-\frac {5 \cos ^3(c+d x) (4 a+b \sin (c+d x))}{6 b^3 d (a+b \sin (c+d x))}-\frac {\cos ^5(c+d x)}{2 b d (a+b \sin (c+d x))^2} \]

[Out]

5/2*a*(4*a^2-3*b^2)*x/b^6-1/2*cos(d*x+c)^5/b/d/(a+b*sin(d*x+c))^2-5/6*cos(d*x+c)^3*(4*a+b*sin(d*x+c))/b^3/d/(a
+b*sin(d*x+c))+5/2*cos(d*x+c)*(4*a^2-b^2-2*a*b*sin(d*x+c))/b^5/d-5*(4*a^4-5*a^2*b^2+b^4)*arctan((b+a*tan(1/2*d
*x+1/2*c))/(a^2-b^2)^(1/2))/b^6/d/(a^2-b^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.37, antiderivative size = 197, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {2693, 2863, 2865, 2735, 2660, 618, 204} \[ -\frac {5 \left (-5 a^2 b^2+4 a^4+b^4\right ) \tan ^{-1}\left (\frac {a \tan \left (\frac {1}{2} (c+d x)\right )+b}{\sqrt {a^2-b^2}}\right )}{b^6 d \sqrt {a^2-b^2}}+\frac {5 \cos (c+d x) \left (4 a^2-2 a b \sin (c+d x)-b^2\right )}{2 b^5 d}+\frac {5 a x \left (4 a^2-3 b^2\right )}{2 b^6}-\frac {5 \cos ^3(c+d x) (4 a+b \sin (c+d x))}{6 b^3 d (a+b \sin (c+d x))}-\frac {\cos ^5(c+d x)}{2 b d (a+b \sin (c+d x))^2} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^6/(a + b*Sin[c + d*x])^3,x]

[Out]

(5*a*(4*a^2 - 3*b^2)*x)/(2*b^6) - (5*(4*a^4 - 5*a^2*b^2 + b^4)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]
])/(b^6*Sqrt[a^2 - b^2]*d) - Cos[c + d*x]^5/(2*b*d*(a + b*Sin[c + d*x])^2) - (5*Cos[c + d*x]^3*(4*a + b*Sin[c
+ d*x]))/(6*b^3*d*(a + b*Sin[c + d*x])) + (5*Cos[c + d*x]*(4*a^2 - b^2 - 2*a*b*Sin[c + d*x]))/(2*b^5*d)

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 2693

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(g*(g*
Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Dist[(g^2*(p - 1))/(b*(m + 1)), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a
^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && IntegersQ[2*m, 2*p]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2863

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[(g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*(b*c*(m + p + 1) -
a*d*p + b*d*(m + 1)*Sin[e + f*x]))/(b^2*f*(m + 1)*(m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(m + 1)*(m + p +
1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Simp[b*d*(m + 1) + (b*c*(m + p + 1) - a*d*p)*Si
n[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && N
eQ[m + p + 1, 0] && IntegerQ[2*m]

Rule 2865

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[(g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*(b*c*(m + p + 1) -
 a*d*p + b*d*(m + p)*Sin[e + f*x]))/(b^2*f*(m + p)*(m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(m + p)*(m + p +
 1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*Simp[b*(a*d*m + b*c*(m + p + 1)) + (a*b*c*(m + p + 1
) - d*(a^2*p - b^2*(m + p)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2,
0] && GtQ[p, 1] && NeQ[m + p, 0] && NeQ[m + p + 1, 0] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \frac {\cos ^6(c+d x)}{(a+b \sin (c+d x))^3} \, dx &=-\frac {\cos ^5(c+d x)}{2 b d (a+b \sin (c+d x))^2}-\frac {5 \int \frac {\cos ^4(c+d x) \sin (c+d x)}{(a+b \sin (c+d x))^2} \, dx}{2 b}\\ &=-\frac {\cos ^5(c+d x)}{2 b d (a+b \sin (c+d x))^2}-\frac {5 \cos ^3(c+d x) (4 a+b \sin (c+d x))}{6 b^3 d (a+b \sin (c+d x))}+\frac {5 \int \frac {\cos ^2(c+d x) (-b-4 a \sin (c+d x))}{a+b \sin (c+d x)} \, dx}{2 b^3}\\ &=-\frac {\cos ^5(c+d x)}{2 b d (a+b \sin (c+d x))^2}-\frac {5 \cos ^3(c+d x) (4 a+b \sin (c+d x))}{6 b^3 d (a+b \sin (c+d x))}+\frac {5 \cos (c+d x) \left (4 a^2-b^2-2 a b \sin (c+d x)\right )}{2 b^5 d}+\frac {5 \int \frac {2 b \left (2 a^2-b^2\right )+2 a \left (4 a^2-3 b^2\right ) \sin (c+d x)}{a+b \sin (c+d x)} \, dx}{4 b^5}\\ &=\frac {5 a \left (4 a^2-3 b^2\right ) x}{2 b^6}-\frac {\cos ^5(c+d x)}{2 b d (a+b \sin (c+d x))^2}-\frac {5 \cos ^3(c+d x) (4 a+b \sin (c+d x))}{6 b^3 d (a+b \sin (c+d x))}+\frac {5 \cos (c+d x) \left (4 a^2-b^2-2 a b \sin (c+d x)\right )}{2 b^5 d}-\frac {\left (5 \left (4 a^4-5 a^2 b^2+b^4\right )\right ) \int \frac {1}{a+b \sin (c+d x)} \, dx}{2 b^6}\\ &=\frac {5 a \left (4 a^2-3 b^2\right ) x}{2 b^6}-\frac {\cos ^5(c+d x)}{2 b d (a+b \sin (c+d x))^2}-\frac {5 \cos ^3(c+d x) (4 a+b \sin (c+d x))}{6 b^3 d (a+b \sin (c+d x))}+\frac {5 \cos (c+d x) \left (4 a^2-b^2-2 a b \sin (c+d x)\right )}{2 b^5 d}-\frac {\left (5 \left (4 a^4-5 a^2 b^2+b^4\right )\right ) \operatorname {Subst}\left (\int \frac {1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{b^6 d}\\ &=\frac {5 a \left (4 a^2-3 b^2\right ) x}{2 b^6}-\frac {\cos ^5(c+d x)}{2 b d (a+b \sin (c+d x))^2}-\frac {5 \cos ^3(c+d x) (4 a+b \sin (c+d x))}{6 b^3 d (a+b \sin (c+d x))}+\frac {5 \cos (c+d x) \left (4 a^2-b^2-2 a b \sin (c+d x)\right )}{2 b^5 d}+\frac {\left (10 \left (4 a^4-5 a^2 b^2+b^4\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac {1}{2} (c+d x)\right )\right )}{b^6 d}\\ &=\frac {5 a \left (4 a^2-3 b^2\right ) x}{2 b^6}-\frac {5 \left (4 a^4-5 a^2 b^2+b^4\right ) \tan ^{-1}\left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{b^6 \sqrt {a^2-b^2} d}-\frac {\cos ^5(c+d x)}{2 b d (a+b \sin (c+d x))^2}-\frac {5 \cos ^3(c+d x) (4 a+b \sin (c+d x))}{6 b^3 d (a+b \sin (c+d x))}+\frac {5 \cos (c+d x) \left (4 a^2-b^2-2 a b \sin (c+d x)\right )}{2 b^5 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 6.57, size = 3889, normalized size = 19.74 \[ \text {Result too large to show} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^6/(a + b*Sin[c + d*x])^3,x]

[Out]

(Cos[c + d*x]^5*(-1/2*(b*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^(7/2)*(b/(a + b) - (b*Sin[c + d*x])/(a + b)
)^(7/2))/(((a*b)/(a - b) - b^2/(a - b))*((a*b)/(a + b) + b^2/(a + b))*(a + b*Sin[c + d*x])^2) - ((-3*a*b^3*(-(
b/(a - b)) - (b*Sin[c + d*x])/(a - b))^(7/2)*(b/(a + b) - (b*Sin[c + d*x])/(a + b))^(7/2))/((a^2 - b^2)*((a*b)
/(a - b) - b^2/(a - b))*((a*b)/(a + b) + b^2/(a + b))*(a + b*Sin[c + d*x])) - ((144*Sqrt[2]*a*b^5*(-(b/(a - b)
) - (b*Sin[c + d*x])/(a - b))^(7/2)*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)]*(1 + ((a - b)*(-(b/(a - b)) - (
b*Sin[c + d*x])/(a - b)))/(2*b))^(7/2)*((7*(3/(16*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*
b))^3) + 1/(2*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^2) + (1 + ((a - b)*(-(b/(a - b))
 - (b*Sin[c + d*x])/(a - b)))/(2*b))^(-1)))/12 + (35*b^4*(((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/
b - ((a - b)^2*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^2)/(3*b^2) + (2*(a - b)^3*(-(b/(a - b)) - (b*Sin[c +
d*x])/(a - b))^3)/(15*b^3) - (Sqrt[2]*Sqrt[a - b]*ArcSinh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a
 - b)])/(Sqrt[2]*Sqrt[b])]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[b]*Sqrt[1 + ((a - b)*(-(b/(a -
 b)) - (b*Sin[c + d*x])/(a - b)))/(2*b)])))/(128*(a - b)^4*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^4*(1 + ((
a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^3)))/(7*(a - b)*(a + b)^4*Sqrt[((a + b)*(b/(a + b) -
(b*Sin[c + d*x])/(a + b)))/b]) + (((18*a^2*b^5)/((a - b)^2*(a + b)^2) + (b^5*(2*a^2 - 5*b^2))/((a - b)^2*(a +
b)^2))*((8*Sqrt[2]*b*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^(5/2)*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)
]*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(7/2)*((5/(16*(1 + ((a - b)*(-(b/(a - b)) -
(b*Sin[c + d*x])/(a - b)))/(2*b))^3) + 5/(8*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^2)
 + (1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(-1))/2 - (15*b^3*(((a - b)*(-(b/(a - b)) -
 (b*Sin[c + d*x])/(a - b)))/b - ((a - b)^2*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^2)/(3*b^2) - (Sqrt[2]*Sqr
t[a - b]*ArcSinh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[2]*Sqrt[b])]*Sqrt[-(b/(a -
b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[b]*Sqrt[1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b)])
))/(64*(a - b)^3*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^3*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a
 - b)))/(2*b))^3)))/(5*(a + b)^2*Sqrt[((a + b)*(b/(a + b) - (b*Sin[c + d*x])/(a + b)))/b]) - ((-((a*b)/(a - b)
) + b^2/(a - b))*((8*Sqrt[2]*b*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^(3/2)*Sqrt[b/(a + b) - (b*Sin[c + d*x
])/(a + b)]*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(7/2)*((3*(5/(8*(1 + ((a - b)*(-(b
/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^3) + 5/(6*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)
))/(2*b))^2) + (1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(-1)))/8 + (15*b^2*(((a - b)*(-
(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/b - (Sqrt[2]*Sqrt[a - b]*ArcSinh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*
Sin[c + d*x])/(a - b)])/(Sqrt[2]*Sqrt[b])]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[b]*Sqrt[1 + ((
a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b)])))/(64*(a - b)^2*(-(b/(a - b)) - (b*Sin[c + d*x])/(a
- b))^2*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^3)))/(3*(a + b)^2*Sqrt[((a + b)*(b/(a
+ b) - (b*Sin[c + d*x])/(a + b)))/b]) - ((-((a*b)/(a - b)) + b^2/(a - b))*((8*Sqrt[2]*b*Sqrt[-(b/(a - b)) - (b
*Sin[c + d*x])/(a - b)]*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)]*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*
x])/(a - b)))/(2*b))^(7/2)*((5*Sqrt[b]*ArcSinh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sq
rt[2]*Sqrt[b])])/(8*Sqrt[2]*Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)]*(1 + ((a - b)*(-(b/(a -
b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(7/2)) + (15/(8*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)
))/(2*b))^3) + 5/(4*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^2) + (1 + ((a - b)*(-(b/(a
 - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(-1))/6))/((a + b)^2*Sqrt[((a + b)*(b/(a + b) - (b*Sin[c + d*x])/(a
 + b)))/b]) - ((-((a*b)/(a - b)) + b^2/(a - b))*(-(((-((a*b)/(a + b)) - b^2/(a + b))*(-(((-((a*b)/(a + b)) - b
^2/(a + b))*((2*Sqrt[a - b]*ArcTanh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[a + b]*S
qrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)])])/(b*Sqrt[a + b]) - (2*Sqrt[-((a*b)/(a + b)) - b^2/(a + b)]*ArcTanh
[(Sqrt[-((a*b)/(a + b)) - b^2/(a + b)]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[-((a*b)/(a - b)) +
 b^2/(a - b)]*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)])])/(b*Sqrt[-((a*b)/(a - b)) + b^2/(a - b)])))/b) + (2
*Sqrt[2]*(a - b)*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)]*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)]*(1 +
 ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(3/2)*((Sqrt[b]*ArcSinh[(Sqrt[a - b]*Sqrt[-(b/(a -
 b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[2]*Sqrt[b])])/(Sqrt[2]*Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x]
)/(a - b)]*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(3/2)) + 1/(2*(1 + ((a - b)*(-(b/(a
 - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b)))))/(b*(a + b)*Sqrt[((a + b)*(b/(a + b) - (b*Sin[c + d*x])/(a + b)))
/b])))/b) + (4*Sqrt[2]*(a - b)*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)]*Sqrt[b/(a + b) - (b*Sin[c + d*x])
/(a + b)]*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(5/2)*((3*Sqrt[b]*ArcSinh[(Sqrt[a -
b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[2]*Sqrt[b])])/(4*Sqrt[2]*Sqrt[a - b]*Sqrt[-(b/(a - b))
 - (b*Sin[c + d*x])/(a - b)]*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(5/2)) + (3/(2*(1
 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^2) + (1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*
x])/(a - b)))/(2*b))^(-1))/4))/((a + b)^2*Sqrt[((a + b)*(b/(a + b) - (b*Sin[c + d*x])/(a + b)))/b])))/b))/b))/
b))/b)/(((a*b)/(a - b) - b^2/(a - b))*((a*b)/(a + b) + b^2/(a + b))))/(2*((a*b)/(a - b) - b^2/(a - b))*((a*b)/
(a + b) + b^2/(a + b)))))/(d*(1 - (a + b*Sin[c + d*x])/(a - b))^(5/2)*(1 - (a + b*Sin[c + d*x])/(a + b))^(5/2)
)

________________________________________________________________________________________

fricas [A]  time = 0.88, size = 752, normalized size = 3.82 \[ \left [-\frac {4 \, b^{5} \cos \left (d x + c\right )^{5} - 30 \, {\left (4 \, a^{3} b^{2} - 3 \, a b^{4}\right )} d x \cos \left (d x + c\right )^{2} - 20 \, {\left (2 \, a^{2} b^{3} - b^{5}\right )} \cos \left (d x + c\right )^{3} + 30 \, {\left (4 \, a^{5} + a^{3} b^{2} - 3 \, a b^{4}\right )} d x - 15 \, {\left (4 \, a^{4} + 3 \, a^{2} b^{2} - b^{4} - {\left (4 \, a^{2} b^{2} - b^{4}\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (4 \, a^{3} b - a b^{3}\right )} \sin \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}} \log \left (-\frac {{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2} - 2 \, {\left (a \cos \left (d x + c\right ) \sin \left (d x + c\right ) + b \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}}}{b^{2} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2}}\right ) + 30 \, {\left (4 \, a^{4} b - a^{2} b^{3} - b^{5}\right )} \cos \left (d x + c\right ) + 10 \, {\left (a b^{4} \cos \left (d x + c\right )^{3} + 6 \, {\left (4 \, a^{4} b - 3 \, a^{2} b^{3}\right )} d x + 6 \, {\left (3 \, a^{3} b^{2} - 2 \, a b^{4}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{12 \, {\left (b^{8} d \cos \left (d x + c\right )^{2} - 2 \, a b^{7} d \sin \left (d x + c\right ) - {\left (a^{2} b^{6} + b^{8}\right )} d\right )}}, -\frac {2 \, b^{5} \cos \left (d x + c\right )^{5} - 15 \, {\left (4 \, a^{3} b^{2} - 3 \, a b^{4}\right )} d x \cos \left (d x + c\right )^{2} - 10 \, {\left (2 \, a^{2} b^{3} - b^{5}\right )} \cos \left (d x + c\right )^{3} + 15 \, {\left (4 \, a^{5} + a^{3} b^{2} - 3 \, a b^{4}\right )} d x + 15 \, {\left (4 \, a^{4} + 3 \, a^{2} b^{2} - b^{4} - {\left (4 \, a^{2} b^{2} - b^{4}\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (4 \, a^{3} b - a b^{3}\right )} \sin \left (d x + c\right )\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \sin \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \cos \left (d x + c\right )}\right ) + 15 \, {\left (4 \, a^{4} b - a^{2} b^{3} - b^{5}\right )} \cos \left (d x + c\right ) + 5 \, {\left (a b^{4} \cos \left (d x + c\right )^{3} + 6 \, {\left (4 \, a^{4} b - 3 \, a^{2} b^{3}\right )} d x + 6 \, {\left (3 \, a^{3} b^{2} - 2 \, a b^{4}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{6 \, {\left (b^{8} d \cos \left (d x + c\right )^{2} - 2 \, a b^{7} d \sin \left (d x + c\right ) - {\left (a^{2} b^{6} + b^{8}\right )} d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6/(a+b*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

[-1/12*(4*b^5*cos(d*x + c)^5 - 30*(4*a^3*b^2 - 3*a*b^4)*d*x*cos(d*x + c)^2 - 20*(2*a^2*b^3 - b^5)*cos(d*x + c)
^3 + 30*(4*a^5 + a^3*b^2 - 3*a*b^4)*d*x - 15*(4*a^4 + 3*a^2*b^2 - b^4 - (4*a^2*b^2 - b^4)*cos(d*x + c)^2 + 2*(
4*a^3*b - a*b^3)*sin(d*x + c))*sqrt(-a^2 + b^2)*log(-((2*a^2 - b^2)*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2
- b^2 - 2*(a*cos(d*x + c)*sin(d*x + c) + b*cos(d*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x
 + c) - a^2 - b^2)) + 30*(4*a^4*b - a^2*b^3 - b^5)*cos(d*x + c) + 10*(a*b^4*cos(d*x + c)^3 + 6*(4*a^4*b - 3*a^
2*b^3)*d*x + 6*(3*a^3*b^2 - 2*a*b^4)*cos(d*x + c))*sin(d*x + c))/(b^8*d*cos(d*x + c)^2 - 2*a*b^7*d*sin(d*x + c
) - (a^2*b^6 + b^8)*d), -1/6*(2*b^5*cos(d*x + c)^5 - 15*(4*a^3*b^2 - 3*a*b^4)*d*x*cos(d*x + c)^2 - 10*(2*a^2*b
^3 - b^5)*cos(d*x + c)^3 + 15*(4*a^5 + a^3*b^2 - 3*a*b^4)*d*x + 15*(4*a^4 + 3*a^2*b^2 - b^4 - (4*a^2*b^2 - b^4
)*cos(d*x + c)^2 + 2*(4*a^3*b - a*b^3)*sin(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*sin(d*x + c) + b)/(sqrt(a^2 -
b^2)*cos(d*x + c))) + 15*(4*a^4*b - a^2*b^3 - b^5)*cos(d*x + c) + 5*(a*b^4*cos(d*x + c)^3 + 6*(4*a^4*b - 3*a^2
*b^3)*d*x + 6*(3*a^3*b^2 - 2*a*b^4)*cos(d*x + c))*sin(d*x + c))/(b^8*d*cos(d*x + c)^2 - 2*a*b^7*d*sin(d*x + c)
 - (a^2*b^6 + b^8)*d)]

________________________________________________________________________________________

giac [B]  time = 0.70, size = 457, normalized size = 2.32 \[ \frac {\frac {15 \, {\left (4 \, a^{3} - 3 \, a b^{2}\right )} {\left (d x + c\right )}}{b^{6}} - \frac {30 \, {\left (4 \, a^{4} - 5 \, a^{2} b^{2} + b^{4}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\relax (a) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + b}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{\sqrt {a^{2} - b^{2}} b^{6}} + \frac {2 \, {\left (9 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 36 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 18 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 72 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 24 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 9 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 36 \, a^{2} - 14 \, b^{2}\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{3} b^{5}} + \frac {6 \, {\left (7 \, a^{5} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 5 \, a^{3} b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, a b^{5} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 8 \, a^{6} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 9 \, a^{4} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 15 \, a^{2} b^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, b^{6} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 25 \, a^{5} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 23 \, a^{3} b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, a b^{5} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 8 \, a^{6} - 7 \, a^{4} b^{2} - a^{2} b^{4}\right )}}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + a\right )}^{2} a^{2} b^{5}}}{6 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6/(a+b*sin(d*x+c))^3,x, algorithm="giac")

[Out]

1/6*(15*(4*a^3 - 3*a*b^2)*(d*x + c)/b^6 - 30*(4*a^4 - 5*a^2*b^2 + b^4)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(a
) + arctan((a*tan(1/2*d*x + 1/2*c) + b)/sqrt(a^2 - b^2)))/(sqrt(a^2 - b^2)*b^6) + 2*(9*a*b*tan(1/2*d*x + 1/2*c
)^5 + 36*a^2*tan(1/2*d*x + 1/2*c)^4 - 18*b^2*tan(1/2*d*x + 1/2*c)^4 + 72*a^2*tan(1/2*d*x + 1/2*c)^2 - 24*b^2*t
an(1/2*d*x + 1/2*c)^2 - 9*a*b*tan(1/2*d*x + 1/2*c) + 36*a^2 - 14*b^2)/((tan(1/2*d*x + 1/2*c)^2 + 1)^3*b^5) + 6
*(7*a^5*b*tan(1/2*d*x + 1/2*c)^3 - 5*a^3*b^3*tan(1/2*d*x + 1/2*c)^3 - 2*a*b^5*tan(1/2*d*x + 1/2*c)^3 + 8*a^6*t
an(1/2*d*x + 1/2*c)^2 + 9*a^4*b^2*tan(1/2*d*x + 1/2*c)^2 - 15*a^2*b^4*tan(1/2*d*x + 1/2*c)^2 - 2*b^6*tan(1/2*d
*x + 1/2*c)^2 + 25*a^5*b*tan(1/2*d*x + 1/2*c) - 23*a^3*b^3*tan(1/2*d*x + 1/2*c) - 2*a*b^5*tan(1/2*d*x + 1/2*c)
 + 8*a^6 - 7*a^4*b^2 - a^2*b^4)/((a*tan(1/2*d*x + 1/2*c)^2 + 2*b*tan(1/2*d*x + 1/2*c) + a)^2*a^2*b^5))/d

________________________________________________________________________________________

maple [B]  time = 0.31, size = 1060, normalized size = 5.38 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^6/(a+b*sin(d*x+c))^3,x)

[Out]

-6/d/b^3/(1+tan(1/2*d*x+1/2*c)^2)^3*tan(1/2*d*x+1/2*c)^4-8/d/b^3/(1+tan(1/2*d*x+1/2*c)^2)^3*tan(1/2*d*x+1/2*c)
^2+12/d/b^5/(1+tan(1/2*d*x+1/2*c)^2)^3*a^2+20/d/b^6*arctan(tan(1/2*d*x+1/2*c))*a^3-15/d/b^4*arctan(tan(1/2*d*x
+1/2*c))*a-2/d/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)^2/a*tan(1/2*d*x+1/2*c)^3-2/d/(tan(1/2*d*x+1/2
*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)^2/a*tan(1/2*d*x+1/2*c)-15/d/b/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b
+a)^2*tan(1/2*d*x+1/2*c)^2+8/d/b^5/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)^2*a^4-7/d/b^3/(tan(1/2*d*
x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)^2*a^2-5/d/b^2/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(
a^2-b^2)^(1/2))+7/d/b^4/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)^2*a^3*tan(1/2*d*x+1/2*c)^3-5/d/b^2/(
tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)^2*a*tan(1/2*d*x+1/2*c)^3+8/d/b^5/(tan(1/2*d*x+1/2*c)^2*a+2*ta
n(1/2*d*x+1/2*c)*b+a)^2*a^4*tan(1/2*d*x+1/2*c)^2+9/d/b^3/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)^2*a
^2*tan(1/2*d*x+1/2*c)^2-2/d*b/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)^2/a^2*tan(1/2*d*x+1/2*c)^2+25/
d/b^4/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)^2*a^3*tan(1/2*d*x+1/2*c)-23/d/b^2/(tan(1/2*d*x+1/2*c)^
2*a+2*tan(1/2*d*x+1/2*c)*b+a)^2*a*tan(1/2*d*x+1/2*c)-20/d/b^6/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*
c)+2*b)/(a^2-b^2)^(1/2))*a^4+25/d/b^4/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))
*a^2+3/d/b^4/(1+tan(1/2*d*x+1/2*c)^2)^3*a*tan(1/2*d*x+1/2*c)^5+12/d/b^5/(1+tan(1/2*d*x+1/2*c)^2)^3*tan(1/2*d*x
+1/2*c)^4*a^2+24/d/b^5/(1+tan(1/2*d*x+1/2*c)^2)^3*tan(1/2*d*x+1/2*c)^2*a^2-3/d/b^4/(1+tan(1/2*d*x+1/2*c)^2)^3*
a*tan(1/2*d*x+1/2*c)-14/3/d/b^3/(1+tan(1/2*d*x+1/2*c)^2)^3-1/d/b/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*
b+a)^2

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6/(a+b*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more details)Is 4*b^2-4*a^2 positive or negative?

________________________________________________________________________________________

mupad [B]  time = 8.58, size = 1226, normalized size = 6.22 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^6/(a + b*sin(c + d*x))^3,x)

[Out]

(atanh((1000*a^2*(b^2 - a^2)^(1/2))/(1000*a^2*b - (5000*a^4)/b + (4000*a^6)/b^3 - 10000*a^3*tan(c/2 + (d*x)/2)
 + 2000*a*b^2*tan(c/2 + (d*x)/2) + (8000*a^5*tan(c/2 + (d*x)/2))/b^2) - (4000*a^4*(b^2 - a^2)^(1/2))/(1000*a^2
*b^3 - 5000*a^4*b + (4000*a^6)/b + 8000*a^5*tan(c/2 + (d*x)/2) + 2000*a*b^4*tan(c/2 + (d*x)/2) - 10000*a^3*b^2
*tan(c/2 + (d*x)/2)) + (2000*a*tan(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2))/(1000*a^2 - (5000*a^4)/b^2 + (4000*a^6)/b
^4 - (10000*a^3*tan(c/2 + (d*x)/2))/b + (8000*a^5*tan(c/2 + (d*x)/2))/b^3 + 2000*a*b*tan(c/2 + (d*x)/2)) - (90
00*a^3*tan(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2))/(1000*a^2*b^2 - 5000*a^4 + (4000*a^6)/b^2 + 2000*a*b^3*tan(c/2 +
(d*x)/2) - 10000*a^3*b*tan(c/2 + (d*x)/2) + (8000*a^5*tan(c/2 + (d*x)/2))/b) + (4000*a^5*tan(c/2 + (d*x)/2)*(b
^2 - a^2)^(1/2))/(4000*a^6 + 1000*a^2*b^4 - 5000*a^4*b^2 + 2000*a*b^5*tan(c/2 + (d*x)/2) + 8000*a^5*b*tan(c/2
+ (d*x)/2) - 10000*a^3*b^3*tan(c/2 + (d*x)/2)))*(20*a^2*(b^2 - a^2)^(1/2) - 5*b^2*(b^2 - a^2)^(1/2)))/(b^6*d)
- ((3*b^4 - 60*a^4 + 35*a^2*b^2)/(3*b^5) + (tan(c/2 + (d*x)/2)*(6*b^4 - 210*a^4 + 125*a^2*b^2))/(3*a*b^4) - (t
an(c/2 + (d*x)/2)^8*(20*a^6 - 2*b^6 - 15*a^2*b^4 + 15*a^4*b^2))/(a^2*b^5) - (2*tan(c/2 + (d*x)/2)^6*(40*a^6 -
3*b^6 - 35*a^2*b^4 + 30*a^4*b^2))/(a^2*b^5) - (2*tan(c/2 + (d*x)/2)^2*(120*a^6 - 3*b^6 - 55*a^2*b^4 + 10*a^4*b
^2))/(3*a^2*b^5) - (2*tan(c/2 + (d*x)/2)^4*(180*a^6 - 9*b^6 - 120*a^2*b^4 + 95*a^4*b^2))/(3*a^2*b^5) + (tan(c/
2 + (d*x)/2)^9*(2*b^4 - 10*a^4 + 5*a^2*b^2))/(a*b^4) + (2*tan(c/2 + (d*x)/2)^7*(4*b^4 - 50*a^4 + 25*a^2*b^2))/
(a*b^4) + (4*tan(c/2 + (d*x)/2)^5*(3*b^4 - 60*a^4 + 35*a^2*b^2))/(a*b^4) + (2*tan(c/2 + (d*x)/2)^3*(12*b^4 - 3
30*a^4 + 205*a^2*b^2))/(3*a*b^4))/(d*(tan(c/2 + (d*x)/2)^2*(5*a^2 + 4*b^2) + tan(c/2 + (d*x)/2)^8*(5*a^2 + 4*b
^2) + tan(c/2 + (d*x)/2)^4*(10*a^2 + 12*b^2) + tan(c/2 + (d*x)/2)^6*(10*a^2 + 12*b^2) + a^2*tan(c/2 + (d*x)/2)
^10 + a^2 + 16*a*b*tan(c/2 + (d*x)/2)^3 + 24*a*b*tan(c/2 + (d*x)/2)^5 + 16*a*b*tan(c/2 + (d*x)/2)^7 + 4*a*b*ta
n(c/2 + (d*x)/2)^9 + 4*a*b*tan(c/2 + (d*x)/2))) + (5*a*atan((3000*a^2*tan(c/2 + (d*x)/2))/(3000*a^2 - (7000*a^
4)/b^2 + (4000*a^6)/b^4) - (7000*a^4*tan(c/2 + (d*x)/2))/(3000*a^2*b^2 - 7000*a^4 + (4000*a^6)/b^2) + (4000*a^
6*tan(c/2 + (d*x)/2))/(4000*a^6 + 3000*a^2*b^4 - 7000*a^4*b^2))*(4*a^2 - 3*b^2))/(b^6*d)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**6/(a+b*sin(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________