3.481 \(\int \sec ^2(c+d x) \sqrt {a+b \sin (c+d x)} \, dx\)

Optimal. Leaf size=149 \[ \frac {\tan (c+d x) \sqrt {a+b \sin (c+d x)}}{d}+\frac {a \sqrt {\frac {a+b \sin (c+d x)}{a+b}} F\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{d \sqrt {a+b \sin (c+d x)}}-\frac {\sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}} \]

[Out]

(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(
a+b))^(1/2))*(a+b*sin(d*x+c))^(1/2)/d/((a+b*sin(d*x+c))/(a+b))^(1/2)-a*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin
(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2))*((a+b*sin(d*x+c))/(a+b))^(
1/2)/d/(a+b*sin(d*x+c))^(1/2)+(a+b*sin(d*x+c))^(1/2)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 149, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {2690, 12, 2752, 2663, 2661, 2655, 2653} \[ \frac {\tan (c+d x) \sqrt {a+b \sin (c+d x)}}{d}+\frac {a \sqrt {\frac {a+b \sin (c+d x)}{a+b}} F\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{d \sqrt {a+b \sin (c+d x)}}-\frac {\sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2*Sqrt[a + b*Sin[c + d*x]],x]

[Out]

-((EllipticE[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[a + b*Sin[c + d*x]])/(d*Sqrt[(a + b*Sin[c + d*x])/(a + b)
])) + (a*EllipticF[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/(d*Sqrt[a + b*Sin[c
+ d*x]]) + (Sqrt[a + b*Sin[c + d*x]]*Tan[c + d*x])/d

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2690

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> -Simp[((g*C
os[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m*Sin[e + f*x])/(f*g*(p + 1)), x] + Dist[1/(g^2*(p + 1)), Int[(g*Cos
[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1)*(a*(p + 2) + b*(m + p + 2)*Sin[e + f*x]), x], x] /; FreeQ[{a,
b, e, f, g}, x] && NeQ[a^2 - b^2, 0] && LtQ[0, m, 1] && LtQ[p, -1] && (IntegersQ[2*m, 2*p] || IntegerQ[m])

Rule 2752

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \sec ^2(c+d x) \sqrt {a+b \sin (c+d x)} \, dx &=\frac {\sqrt {a+b \sin (c+d x)} \tan (c+d x)}{d}-\int \frac {b \sin (c+d x)}{2 \sqrt {a+b \sin (c+d x)}} \, dx\\ &=\frac {\sqrt {a+b \sin (c+d x)} \tan (c+d x)}{d}-\frac {1}{2} b \int \frac {\sin (c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx\\ &=\frac {\sqrt {a+b \sin (c+d x)} \tan (c+d x)}{d}-\frac {1}{2} \int \sqrt {a+b \sin (c+d x)} \, dx+\frac {1}{2} a \int \frac {1}{\sqrt {a+b \sin (c+d x)}} \, dx\\ &=\frac {\sqrt {a+b \sin (c+d x)} \tan (c+d x)}{d}-\frac {\sqrt {a+b \sin (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}} \, dx}{2 \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {\left (a \sqrt {\frac {a+b \sin (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}} \, dx}{2 \sqrt {a+b \sin (c+d x)}}\\ &=-\frac {E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {a F\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{d \sqrt {a+b \sin (c+d x)}}+\frac {\sqrt {a+b \sin (c+d x)} \tan (c+d x)}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.81, size = 127, normalized size = 0.85 \[ \frac {\tan (c+d x) (a+b \sin (c+d x))-a \sqrt {\frac {a+b \sin (c+d x)}{a+b}} F\left (\frac {1}{4} (-2 c-2 d x+\pi )|\frac {2 b}{a+b}\right )+(a+b) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} E\left (\frac {1}{4} (-2 c-2 d x+\pi )|\frac {2 b}{a+b}\right )}{d \sqrt {a+b \sin (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2*Sqrt[a + b*Sin[c + d*x]],x]

[Out]

((a + b)*EllipticE[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)] - a*EllipticF[(-2*
c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)] + (a + b*Sin[c + d*x])*Tan[c + d*x])/(d*S
qrt[a + b*Sin[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 1.14, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sqrt {b \sin \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+b*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sin(d*x + c) + a)*sec(d*x + c)^2, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \sin \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+b*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sin(d*x + c) + a)*sec(d*x + c)^2, x)

________________________________________________________________________________________

maple [B]  time = 1.01, size = 614, normalized size = 4.12 \[ \frac {\sqrt {\left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) b +\left (\cos ^{2}\left (d x +c \right )\right ) a}\, \left (\EllipticE \left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) \sqrt {-\frac {b \sin \left (d x +c \right )}{a +b}+\frac {b}{a +b}}\, \sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a -b}-\frac {b}{a -b}}\, a^{2}-\EllipticE \left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) \sqrt {-\frac {b \sin \left (d x +c \right )}{a +b}+\frac {b}{a +b}}\, \sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a -b}-\frac {b}{a -b}}\, b^{2}-\sqrt {-\frac {b \sin \left (d x +c \right )}{a +b}+\frac {b}{a +b}}\, \sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}\, \EllipticF \left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) \sqrt {-\frac {b \sin \left (d x +c \right )}{a -b}-\frac {b}{a -b}}\, a b +\sqrt {-\frac {b \sin \left (d x +c \right )}{a +b}+\frac {b}{a +b}}\, \sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}\, \EllipticF \left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) \sqrt {-\frac {b \sin \left (d x +c \right )}{a -b}-\frac {b}{a -b}}\, b^{2}-b^{2} \left (\cos ^{2}\left (d x +c \right )\right )+a b \sin \left (d x +c \right )+b^{2}\right )}{b \sqrt {-\left (a +b \sin \left (d x +c \right )\right ) \left (\sin \left (d x +c \right )-1\right ) \left (1+\sin \left (d x +c \right )\right )}\, \cos \left (d x +c \right ) \sqrt {a +b \sin \left (d x +c \right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(a+b*sin(d*x+c))^(1/2),x)

[Out]

1/b*(cos(d*x+c)^2*sin(d*x+c)*b+cos(d*x+c)^2*a)^(1/2)*(EllipticE((b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2),((a-b)/(a
+b))^(1/2))*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a
-b))^(1/2)*a^2-EllipticE((b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2),((a-b)/(a+b))^(1/2))*(-b/(a+b)*sin(d*x+c)+b/(a+b
))^(1/2)*(b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*b^2-(-b/(a+b)*sin(d*x+c)+b/(
a+b))^(1/2)*(b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2)*EllipticF((b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2),((a-b)/(a+b))^
(1/2))*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*a*b+(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(b/(a-b)*sin(d*x+c)+1/(a-b)
*a)^(1/2)*EllipticF((b/(a-b)*sin(d*x+c)+1/(a-b)*a)^(1/2),((a-b)/(a+b))^(1/2))*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1
/2)*b^2-b^2*cos(d*x+c)^2+a*b*sin(d*x+c)+b^2)/(-(a+b*sin(d*x+c))*(sin(d*x+c)-1)*(1+sin(d*x+c)))^(1/2)/cos(d*x+c
)/(a+b*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \sin \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+b*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sin(d*x + c) + a)*sec(d*x + c)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {a+b\,\sin \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*sin(c + d*x))^(1/2)/cos(c + d*x)^2,x)

[Out]

int((a + b*sin(c + d*x))^(1/2)/cos(c + d*x)^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a + b \sin {\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(a+b*sin(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*sin(c + d*x))*sec(c + d*x)**2, x)

________________________________________________________________________________________