3.523 \(\int \frac {\cos ^4(c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=229 \[ -\frac {32 a \left (a^2-b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} F\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{5 b^4 d \sqrt {a+b \sin (c+d x)}}+\frac {8 \left (4 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{5 b^4 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {4 \cos (c+d x) (4 a-3 b \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{5 b^3 d}-\frac {2 \cos ^3(c+d x)}{b d \sqrt {a+b \sin (c+d x)}} \]

[Out]

-2*cos(d*x+c)^3/b/d/(a+b*sin(d*x+c))^(1/2)+4/5*cos(d*x+c)*(4*a-3*b*sin(d*x+c))*(a+b*sin(d*x+c))^(1/2)/b^3/d-8/
5*(4*a^2-3*b^2)*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d
*x),2^(1/2)*(b/(a+b))^(1/2))*(a+b*sin(d*x+c))^(1/2)/b^4/d/((a+b*sin(d*x+c))/(a+b))^(1/2)+32/5*a*(a^2-b^2)*(sin
(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b)
)^(1/2))*((a+b*sin(d*x+c))/(a+b))^(1/2)/b^4/d/(a+b*sin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.33, antiderivative size = 229, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {2693, 2865, 2752, 2663, 2661, 2655, 2653} \[ -\frac {32 a \left (a^2-b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} F\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{5 b^4 d \sqrt {a+b \sin (c+d x)}}+\frac {8 \left (4 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{5 b^4 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {4 \cos (c+d x) (4 a-3 b \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{5 b^3 d}-\frac {2 \cos ^3(c+d x)}{b d \sqrt {a+b \sin (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^4/(a + b*Sin[c + d*x])^(3/2),x]

[Out]

(-2*Cos[c + d*x]^3)/(b*d*Sqrt[a + b*Sin[c + d*x]]) + (4*Cos[c + d*x]*(4*a - 3*b*Sin[c + d*x])*Sqrt[a + b*Sin[c
 + d*x]])/(5*b^3*d) + (8*(4*a^2 - 3*b^2)*EllipticE[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[a + b*Sin[c + d*x]]
)/(5*b^4*d*Sqrt[(a + b*Sin[c + d*x])/(a + b)]) - (32*a*(a^2 - b^2)*EllipticF[(c - Pi/2 + d*x)/2, (2*b)/(a + b)
]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/(5*b^4*d*Sqrt[a + b*Sin[c + d*x]])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2693

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(g*(g*
Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Dist[(g^2*(p - 1))/(b*(m + 1)), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a
^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && IntegersQ[2*m, 2*p]

Rule 2752

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2865

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[(g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*(b*c*(m + p + 1) -
 a*d*p + b*d*(m + p)*Sin[e + f*x]))/(b^2*f*(m + p)*(m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(m + p)*(m + p +
 1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*Simp[b*(a*d*m + b*c*(m + p + 1)) + (a*b*c*(m + p + 1
) - d*(a^2*p - b^2*(m + p)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2,
0] && GtQ[p, 1] && NeQ[m + p, 0] && NeQ[m + p + 1, 0] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \frac {\cos ^4(c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx &=-\frac {2 \cos ^3(c+d x)}{b d \sqrt {a+b \sin (c+d x)}}-\frac {6 \int \frac {\cos ^2(c+d x) \sin (c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx}{b}\\ &=-\frac {2 \cos ^3(c+d x)}{b d \sqrt {a+b \sin (c+d x)}}+\frac {4 \cos (c+d x) (4 a-3 b \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{5 b^3 d}-\frac {8 \int \frac {-\frac {a b}{2}-\frac {1}{2} \left (4 a^2-3 b^2\right ) \sin (c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx}{5 b^3}\\ &=-\frac {2 \cos ^3(c+d x)}{b d \sqrt {a+b \sin (c+d x)}}+\frac {4 \cos (c+d x) (4 a-3 b \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{5 b^3 d}+\frac {\left (4 \left (4 a^2-3 b^2\right )\right ) \int \sqrt {a+b \sin (c+d x)} \, dx}{5 b^4}-\frac {\left (16 a \left (a^2-b^2\right )\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}} \, dx}{5 b^4}\\ &=-\frac {2 \cos ^3(c+d x)}{b d \sqrt {a+b \sin (c+d x)}}+\frac {4 \cos (c+d x) (4 a-3 b \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{5 b^3 d}+\frac {\left (4 \left (4 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}} \, dx}{5 b^4 \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {\left (16 a \left (a^2-b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}} \, dx}{5 b^4 \sqrt {a+b \sin (c+d x)}}\\ &=-\frac {2 \cos ^3(c+d x)}{b d \sqrt {a+b \sin (c+d x)}}+\frac {4 \cos (c+d x) (4 a-3 b \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{5 b^3 d}+\frac {8 \left (4 a^2-3 b^2\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{5 b^4 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {32 a \left (a^2-b^2\right ) F\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{5 b^4 d \sqrt {a+b \sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.12, size = 187, normalized size = 0.82 \[ \frac {b \cos (c+d x) \left (16 a^2+4 a b \sin (c+d x)+b^2 \cos (2 (c+d x))-11 b^2\right )+32 a \left (a^2-b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} F\left (\frac {1}{4} (-2 c-2 d x+\pi )|\frac {2 b}{a+b}\right )-8 \left (4 a^3+4 a^2 b-3 a b^2-3 b^3\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} E\left (\frac {1}{4} (-2 c-2 d x+\pi )|\frac {2 b}{a+b}\right )}{5 b^4 d \sqrt {a+b \sin (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^4/(a + b*Sin[c + d*x])^(3/2),x]

[Out]

(-8*(4*a^3 + 4*a^2*b - 3*a*b^2 - 3*b^3)*EllipticE[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*
x])/(a + b)] + 32*a*(a^2 - b^2)*EllipticF[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a +
 b)] + b*Cos[c + d*x]*(16*a^2 - 11*b^2 + b^2*Cos[2*(c + d*x)] + 4*a*b*Sin[c + d*x]))/(5*b^4*d*Sqrt[a + b*Sin[c
 + d*x]])

________________________________________________________________________________________

fricas [F]  time = 0.93, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {b \sin \left (d x + c\right ) + a} \cos \left (d x + c\right )^{4}}{b^{2} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+b*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral(-sqrt(b*sin(d*x + c) + a)*cos(d*x + c)^4/(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{4}}{{\left (b \sin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+b*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^4/(b*sin(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

maple [B]  time = 0.70, size = 797, normalized size = 3.48 \[ \frac {\frac {32 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, \EllipticF \left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{3} b}{5}-\frac {24 a^{2} \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, \EllipticF \left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) b^{2}}{5}-\frac {32 a \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, \EllipticF \left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) b^{3}}{5}+\frac {24 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, \EllipticF \left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) b^{4}}{5}-\frac {32 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, \EllipticE \left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{4}}{5}+\frac {56 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, \EllipticE \left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{2} b^{2}}{5}-\frac {24 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, \EllipticE \left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) b^{4}}{5}+\frac {2 b^{4} \left (\sin ^{4}\left (d x +c \right )\right )}{5}-\frac {4 a \,b^{3} \left (\sin ^{3}\left (d x +c \right )\right )}{5}-\frac {16 a^{2} b^{2} \left (\sin ^{2}\left (d x +c \right )\right )}{5}+\frac {8 b^{4} \left (\sin ^{2}\left (d x +c \right )\right )}{5}+\frac {4 a \,b^{3} \sin \left (d x +c \right )}{5}+\frac {16 a^{2} b^{2}}{5}-2 b^{4}}{b^{5} \cos \left (d x +c \right ) \sqrt {a +b \sin \left (d x +c \right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4/(a+b*sin(d*x+c))^(3/2),x)

[Out]

2/5*(16*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*Ellipti
cF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^3*b-12*a^2*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+
c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1
/2))*b^2-16*a*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*E
llipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*b^3+12*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+
c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1
/2))*b^4-16*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*Ell
ipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^4+28*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)
-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2
))*a^2*b^2-12*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*E
llipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*b^4+b^4*sin(d*x+c)^4-2*a*b^3*sin(d*x+c)^3-8*a^2*b
^2*sin(d*x+c)^2+4*b^4*sin(d*x+c)^2+2*a*b^3*sin(d*x+c)+8*a^2*b^2-5*b^4)/b^5/cos(d*x+c)/(a+b*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{4}}{{\left (b \sin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+b*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^4/(b*sin(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\cos \left (c+d\,x\right )}^4}{{\left (a+b\,\sin \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^4/(a + b*sin(c + d*x))^(3/2),x)

[Out]

int(cos(c + d*x)^4/(a + b*sin(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos ^{4}{\left (c + d x \right )}}{\left (a + b \sin {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4/(a+b*sin(d*x+c))**(3/2),x)

[Out]

Integral(cos(c + d*x)**4/(a + b*sin(c + d*x))**(3/2), x)

________________________________________________________________________________________