3.621 \(\int \frac {(e \cos (c+d x))^p}{(a+b \sin (c+d x))^3} \, dx\)

Optimal. Leaf size=170 \[ -\frac {e (e \cos (c+d x))^{p-1} \left (-\frac {b (1-\sin (c+d x))}{a+b \sin (c+d x)}\right )^{\frac {1-p}{2}} \left (\frac {b (\sin (c+d x)+1)}{a+b \sin (c+d x)}\right )^{\frac {1-p}{2}} F_1\left (3-p;\frac {1-p}{2},\frac {1-p}{2};4-p;\frac {a+b}{a+b \sin (c+d x)},\frac {a-b}{a+b \sin (c+d x)}\right )}{b d (3-p) (a+b \sin (c+d x))^2} \]

[Out]

-e*AppellF1(3-p,1/2-1/2*p,1/2-1/2*p,4-p,(a-b)/(a+b*sin(d*x+c)),(a+b)/(a+b*sin(d*x+c)))*(e*cos(d*x+c))^(-1+p)*(
-b*(1-sin(d*x+c))/(a+b*sin(d*x+c)))^(1/2-1/2*p)*(b*(1+sin(d*x+c))/(a+b*sin(d*x+c)))^(1/2-1/2*p)/b/d/(3-p)/(a+b
*sin(d*x+c))^2

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 170, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {2703} \[ -\frac {e (e \cos (c+d x))^{p-1} \left (-\frac {b (1-\sin (c+d x))}{a+b \sin (c+d x)}\right )^{\frac {1-p}{2}} \left (\frac {b (\sin (c+d x)+1)}{a+b \sin (c+d x)}\right )^{\frac {1-p}{2}} F_1\left (3-p;\frac {1-p}{2},\frac {1-p}{2};4-p;\frac {a+b}{a+b \sin (c+d x)},\frac {a-b}{a+b \sin (c+d x)}\right )}{b d (3-p) (a+b \sin (c+d x))^2} \]

Antiderivative was successfully verified.

[In]

Int[(e*Cos[c + d*x])^p/(a + b*Sin[c + d*x])^3,x]

[Out]

-((e*AppellF1[3 - p, (1 - p)/2, (1 - p)/2, 4 - p, (a + b)/(a + b*Sin[c + d*x]), (a - b)/(a + b*Sin[c + d*x])]*
(e*Cos[c + d*x])^(-1 + p)*(-((b*(1 - Sin[c + d*x]))/(a + b*Sin[c + d*x])))^((1 - p)/2)*((b*(1 + Sin[c + d*x]))
/(a + b*Sin[c + d*x]))^((1 - p)/2))/(b*d*(3 - p)*(a + b*Sin[c + d*x])^2))

Rule 2703

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(g*(g*
Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*AppellF1[-p - m, (1 - p)/2, (1 - p)/2, 1 - p - m, (a + b)/(
a + b*Sin[e + f*x]), (a - b)/(a + b*Sin[e + f*x])])/(b*f*(m + p)*(-((b*(1 - Sin[e + f*x]))/(a + b*Sin[e + f*x]
)))^((p - 1)/2)*((b*(1 + Sin[e + f*x]))/(a + b*Sin[e + f*x]))^((p - 1)/2)), x] /; FreeQ[{a, b, e, f, g, p}, x]
 && NeQ[a^2 - b^2, 0] && ILtQ[m, 0] &&  !IGtQ[m + p + 1, 0]

Rubi steps

\begin {align*} \int \frac {(e \cos (c+d x))^p}{(a+b \sin (c+d x))^3} \, dx &=-\frac {e F_1\left (3-p;\frac {1-p}{2},\frac {1-p}{2};4-p;\frac {a+b}{a+b \sin (c+d x)},\frac {a-b}{a+b \sin (c+d x)}\right ) (e \cos (c+d x))^{-1+p} \left (-\frac {b (1-\sin (c+d x))}{a+b \sin (c+d x)}\right )^{\frac {1-p}{2}} \left (\frac {b (1+\sin (c+d x))}{a+b \sin (c+d x)}\right )^{\frac {1-p}{2}}}{b d (3-p) (a+b \sin (c+d x))^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 28.26, size = 7781, normalized size = 45.77 \[ \text {Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(e*Cos[c + d*x])^p/(a + b*Sin[c + d*x])^3,x]

[Out]

Result too large to show

________________________________________________________________________________________

fricas [F]  time = 0.74, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\left (e \cos \left (d x + c\right )\right )^{p}}{3 \, a b^{2} \cos \left (d x + c\right )^{2} - a^{3} - 3 \, a b^{2} + {\left (b^{3} \cos \left (d x + c\right )^{2} - 3 \, a^{2} b - b^{3}\right )} \sin \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^p/(a+b*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

integral(-(e*cos(d*x + c))^p/(3*a*b^2*cos(d*x + c)^2 - a^3 - 3*a*b^2 + (b^3*cos(d*x + c)^2 - 3*a^2*b - b^3)*si
n(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \cos \left (d x + c\right )\right )^{p}}{{\left (b \sin \left (d x + c\right ) + a\right )}^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^p/(a+b*sin(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((e*cos(d*x + c))^p/(b*sin(d*x + c) + a)^3, x)

________________________________________________________________________________________

maple [F]  time = 1.40, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \cos \left (d x +c \right )\right )^{p}}{\left (a +b \sin \left (d x +c \right )\right )^{3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(d*x+c))^p/(a+b*sin(d*x+c))^3,x)

[Out]

int((e*cos(d*x+c))^p/(a+b*sin(d*x+c))^3,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \cos \left (d x + c\right )\right )^{p}}{{\left (b \sin \left (d x + c\right ) + a\right )}^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^p/(a+b*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate((e*cos(d*x + c))^p/(b*sin(d*x + c) + a)^3, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (e\,\cos \left (c+d\,x\right )\right )}^p}{{\left (a+b\,\sin \left (c+d\,x\right )\right )}^3} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(c + d*x))^p/(a + b*sin(c + d*x))^3,x)

[Out]

int((e*cos(c + d*x))^p/(a + b*sin(c + d*x))^3, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))**p/(a+b*sin(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________