3.126 \(\int \frac {\sqrt {a+a \sin (c+d x)}}{x^2} \, dx\)

Optimal. Leaf size=130 \[ -\frac {1}{2} d \sin \left (\frac {1}{4} (2 c-\pi )\right ) \text {Ci}\left (\frac {d x}{2}\right ) \csc \left (\frac {c}{2}+\frac {d x}{2}+\frac {\pi }{4}\right ) \sqrt {a \sin (c+d x)+a}-\frac {1}{2} d \sin \left (\frac {1}{4} (2 c+\pi )\right ) \text {Si}\left (\frac {d x}{2}\right ) \csc \left (\frac {c}{2}+\frac {d x}{2}+\frac {\pi }{4}\right ) \sqrt {a \sin (c+d x)+a}-\frac {\sqrt {a \sin (c+d x)+a}}{x} \]

[Out]

-(a+a*sin(d*x+c))^(1/2)/x+1/2*d*Ci(1/2*d*x)*csc(1/2*c+1/4*Pi+1/2*d*x)*cos(1/2*c+1/4*Pi)*(a+a*sin(d*x+c))^(1/2)
-1/2*d*csc(1/2*c+1/4*Pi+1/2*d*x)*Si(1/2*d*x)*sin(1/2*c+1/4*Pi)*(a+a*sin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 130, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.278, Rules used = {3319, 3297, 3303, 3299, 3302} \[ -\frac {1}{2} d \sin \left (\frac {1}{4} (2 c-\pi )\right ) \text {CosIntegral}\left (\frac {d x}{2}\right ) \csc \left (\frac {c}{2}+\frac {d x}{2}+\frac {\pi }{4}\right ) \sqrt {a \sin (c+d x)+a}-\frac {1}{2} d \sin \left (\frac {1}{4} (2 c+\pi )\right ) \text {Si}\left (\frac {d x}{2}\right ) \csc \left (\frac {c}{2}+\frac {d x}{2}+\frac {\pi }{4}\right ) \sqrt {a \sin (c+d x)+a}-\frac {\sqrt {a \sin (c+d x)+a}}{x} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Sin[c + d*x]]/x^2,x]

[Out]

-(Sqrt[a + a*Sin[c + d*x]]/x) - (d*CosIntegral[(d*x)/2]*Csc[c/2 + Pi/4 + (d*x)/2]*Sin[(2*c - Pi)/4]*Sqrt[a + a
*Sin[c + d*x]])/2 - (d*Csc[c/2 + Pi/4 + (d*x)/2]*Sin[(2*c + Pi)/4]*Sqrt[a + a*Sin[c + d*x]]*SinIntegral[(d*x)/
2])/2

Rule 3297

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[((c + d*x)^(m + 1)*Sin[e + f*x])/(d*(
m + 1)), x] - Dist[f/(d*(m + 1)), Int[(c + d*x)^(m + 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && LtQ[
m, -1]

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3302

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3319

Int[((c_.) + (d_.)*(x_))^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[((2*a)^IntPart[n
]*(a + b*Sin[e + f*x])^FracPart[n])/Sin[e/2 + (a*Pi)/(4*b) + (f*x)/2]^(2*FracPart[n]), Int[(c + d*x)^m*Sin[e/2
 + (a*Pi)/(4*b) + (f*x)/2]^(2*n), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[n
 + 1/2] && (GtQ[n, 0] || IGtQ[m, 0])

Rubi steps

\begin {align*} \int \frac {\sqrt {a+a \sin (c+d x)}}{x^2} \, dx &=\left (\csc \left (\frac {c}{2}+\frac {\pi }{4}+\frac {d x}{2}\right ) \sqrt {a+a \sin (c+d x)}\right ) \int \frac {\sin \left (\frac {c}{2}+\frac {\pi }{4}+\frac {d x}{2}\right )}{x^2} \, dx\\ &=-\frac {\sqrt {a+a \sin (c+d x)}}{x}+\frac {1}{2} \left (d \csc \left (\frac {c}{2}+\frac {\pi }{4}+\frac {d x}{2}\right ) \sqrt {a+a \sin (c+d x)}\right ) \int \frac {\cos \left (\frac {c}{2}+\frac {\pi }{4}+\frac {d x}{2}\right )}{x} \, dx\\ &=-\frac {\sqrt {a+a \sin (c+d x)}}{x}-\frac {1}{2} \left (d \csc \left (\frac {c}{2}+\frac {\pi }{4}+\frac {d x}{2}\right ) \sin \left (\frac {1}{4} (2 c-\pi )\right ) \sqrt {a+a \sin (c+d x)}\right ) \int \frac {\cos \left (\frac {d x}{2}\right )}{x} \, dx-\frac {1}{2} \left (d \csc \left (\frac {c}{2}+\frac {\pi }{4}+\frac {d x}{2}\right ) \sin \left (\frac {1}{4} (2 c+\pi )\right ) \sqrt {a+a \sin (c+d x)}\right ) \int \frac {\sin \left (\frac {d x}{2}\right )}{x} \, dx\\ &=-\frac {\sqrt {a+a \sin (c+d x)}}{x}-\frac {1}{2} d \text {Ci}\left (\frac {d x}{2}\right ) \csc \left (\frac {c}{2}+\frac {\pi }{4}+\frac {d x}{2}\right ) \sin \left (\frac {1}{4} (2 c-\pi )\right ) \sqrt {a+a \sin (c+d x)}-\frac {1}{2} d \csc \left (\frac {c}{2}+\frac {\pi }{4}+\frac {d x}{2}\right ) \sin \left (\frac {1}{4} (2 c+\pi )\right ) \sqrt {a+a \sin (c+d x)} \text {Si}\left (\frac {d x}{2}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.35, size = 117, normalized size = 0.90 \[ \frac {\sqrt {a (\sin (c+d x)+1)} \left (d x \left (\cos \left (\frac {c}{2}\right )-\sin \left (\frac {c}{2}\right )\right ) \text {Ci}\left (\frac {d x}{2}\right )-d x \left (\sin \left (\frac {c}{2}\right )+\cos \left (\frac {c}{2}\right )\right ) \text {Si}\left (\frac {d x}{2}\right )-2 \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )\right )}{2 x \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Sin[c + d*x]]/x^2,x]

[Out]

(Sqrt[a*(1 + Sin[c + d*x])]*(d*x*CosIntegral[(d*x)/2]*(Cos[c/2] - Sin[c/2]) - 2*(Cos[(c + d*x)/2] + Sin[(c + d
*x)/2]) - d*x*(Cos[c/2] + Sin[c/2])*SinIntegral[(d*x)/2]))/(2*x*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^(1/2)/x^2,x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (ha
s polynomial part)

________________________________________________________________________________________

giac [C]  time = 2.62, size = 1140, normalized size = 8.77 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^(1/2)/x^2,x, algorithm="giac")

[Out]

1/4*sqrt(2)*(d*x*imag_part(cos_integral(1/2*d*x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*d*x)^2*tan(1/4*c
)^2 - d*x*imag_part(cos_integral(-1/2*d*x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*d*x)^2*tan(1/4*c)^2 -
d*x*real_part(cos_integral(1/2*d*x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*d*x)^2*tan(1/4*c)^2 - d*x*rea
l_part(cos_integral(-1/2*d*x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*d*x)^2*tan(1/4*c)^2 + 2*d*x*sgn(cos
(-1/4*pi + 1/2*d*x + 1/2*c))*sin_integral(1/2*d*x)*tan(1/4*d*x)^2*tan(1/4*c)^2 - 2*d*x*imag_part(cos_integral(
1/2*d*x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*d*x)^2*tan(1/4*c) + 2*d*x*imag_part(cos_integral(-1/2*d*
x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*d*x)^2*tan(1/4*c) - 2*d*x*real_part(cos_integral(1/2*d*x))*sgn
(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*d*x)^2*tan(1/4*c) - 2*d*x*real_part(cos_integral(-1/2*d*x))*sgn(cos(-
1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*d*x)^2*tan(1/4*c) - 4*d*x*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin_integral(
1/2*d*x)*tan(1/4*d*x)^2*tan(1/4*c) - d*x*imag_part(cos_integral(1/2*d*x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*
tan(1/4*d*x)^2 + d*x*imag_part(cos_integral(-1/2*d*x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*d*x)^2 + d*
x*real_part(cos_integral(1/2*d*x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*d*x)^2 + d*x*real_part(cos_inte
gral(-1/2*d*x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*d*x)^2 - 2*d*x*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))
*sin_integral(1/2*d*x)*tan(1/4*d*x)^2 + d*x*imag_part(cos_integral(1/2*d*x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c
))*tan(1/4*c)^2 - d*x*imag_part(cos_integral(-1/2*d*x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*c)^2 - d*x
*real_part(cos_integral(1/2*d*x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*c)^2 - d*x*real_part(cos_integra
l(-1/2*d*x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*c)^2 + 2*d*x*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin_
integral(1/2*d*x)*tan(1/4*c)^2 - 2*d*x*imag_part(cos_integral(1/2*d*x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*ta
n(1/4*c) + 2*d*x*imag_part(cos_integral(-1/2*d*x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*c) - 2*d*x*real
_part(cos_integral(1/2*d*x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*c) - 2*d*x*real_part(cos_integral(-1/
2*d*x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*c) - 4*d*x*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin_integra
l(1/2*d*x)*tan(1/4*c) - 4*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*d*x)^2*tan(1/4*c)^2 - d*x*imag_part(cos_
integral(1/2*d*x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c)) + d*x*imag_part(cos_integral(-1/2*d*x))*sgn(cos(-1/4*pi
 + 1/2*d*x + 1/2*c)) + d*x*real_part(cos_integral(1/2*d*x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c)) + d*x*real_par
t(cos_integral(-1/2*d*x))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c)) - 2*d*x*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin_
integral(1/2*d*x) + 8*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*d*x)^2*tan(1/4*c) + 8*sgn(cos(-1/4*pi + 1/2*
d*x + 1/2*c))*tan(1/4*d*x)*tan(1/4*c)^2 + 4*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*d*x)^2 + 16*sgn(cos(-1
/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*d*x)*tan(1/4*c) + 4*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*c)^2 - 8*sgn
(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*d*x) - 8*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*tan(1/4*c) - 4*sgn(cos(-
1/4*pi + 1/2*d*x + 1/2*c)))*sqrt(a)/(sqrt(2)*x*tan(1/4*d*x)^2*tan(1/4*c)^2 + sqrt(2)*x*tan(1/4*d*x)^2 + sqrt(2
)*x*tan(1/4*c)^2 + sqrt(2)*x)

________________________________________________________________________________________

maple [F]  time = 0.07, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a +a \sin \left (d x +c \right )}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(d*x+c))^(1/2)/x^2,x)

[Out]

int((a+a*sin(d*x+c))^(1/2)/x^2,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a \sin \left (d x + c\right ) + a}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(d*x + c) + a)/x^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {a+a\,\sin \left (c+d\,x\right )}}{x^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(c + d*x))^(1/2)/x^2,x)

[Out]

int((a + a*sin(c + d*x))^(1/2)/x^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a \left (\sin {\left (c + d x \right )} + 1\right )}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))**(1/2)/x**2,x)

[Out]

Integral(sqrt(a*(sin(c + d*x) + 1))/x**2, x)

________________________________________________________________________________________