3.1092 \(\int \cos ^4(c+d x) \sin ^4(c+d x) (a+b \sin (c+d x)) \, dx\)

Optimal. Leaf size=143 \[ -\frac {a \sin ^3(c+d x) \cos ^5(c+d x)}{8 d}-\frac {a \sin (c+d x) \cos ^5(c+d x)}{16 d}+\frac {a \sin (c+d x) \cos ^3(c+d x)}{64 d}+\frac {3 a \sin (c+d x) \cos (c+d x)}{128 d}+\frac {3 a x}{128}-\frac {b \cos ^9(c+d x)}{9 d}+\frac {2 b \cos ^7(c+d x)}{7 d}-\frac {b \cos ^5(c+d x)}{5 d} \]

[Out]

3/128*a*x-1/5*b*cos(d*x+c)^5/d+2/7*b*cos(d*x+c)^7/d-1/9*b*cos(d*x+c)^9/d+3/128*a*cos(d*x+c)*sin(d*x+c)/d+1/64*
a*cos(d*x+c)^3*sin(d*x+c)/d-1/16*a*cos(d*x+c)^5*sin(d*x+c)/d-1/8*a*cos(d*x+c)^5*sin(d*x+c)^3/d

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 143, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {2838, 2568, 2635, 8, 2565, 270} \[ -\frac {a \sin ^3(c+d x) \cos ^5(c+d x)}{8 d}-\frac {a \sin (c+d x) \cos ^5(c+d x)}{16 d}+\frac {a \sin (c+d x) \cos ^3(c+d x)}{64 d}+\frac {3 a \sin (c+d x) \cos (c+d x)}{128 d}+\frac {3 a x}{128}-\frac {b \cos ^9(c+d x)}{9 d}+\frac {2 b \cos ^7(c+d x)}{7 d}-\frac {b \cos ^5(c+d x)}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^4*Sin[c + d*x]^4*(a + b*Sin[c + d*x]),x]

[Out]

(3*a*x)/128 - (b*Cos[c + d*x]^5)/(5*d) + (2*b*Cos[c + d*x]^7)/(7*d) - (b*Cos[c + d*x]^9)/(9*d) + (3*a*Cos[c +
d*x]*Sin[c + d*x])/(128*d) + (a*Cos[c + d*x]^3*Sin[c + d*x])/(64*d) - (a*Cos[c + d*x]^5*Sin[c + d*x])/(16*d) -
 (a*Cos[c + d*x]^5*Sin[c + d*x]^3)/(8*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 2565

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> -Dist[(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
 &&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rule 2568

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> -Simp[(a*(b*Cos[e
+ f*x])^(n + 1)*(a*Sin[e + f*x])^(m - 1))/(b*f*(m + n)), x] + Dist[(a^2*(m - 1))/(m + n), Int[(b*Cos[e + f*x])
^n*(a*Sin[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && NeQ[m + n, 0] && IntegersQ[2*
m, 2*n]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2838

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)
*(x_)]), x_Symbol] :> Dist[a, Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Dist[b/d, Int[(g*Cos[e + f*x
])^p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]

Rubi steps

\begin {align*} \int \cos ^4(c+d x) \sin ^4(c+d x) (a+b \sin (c+d x)) \, dx &=a \int \cos ^4(c+d x) \sin ^4(c+d x) \, dx+b \int \cos ^4(c+d x) \sin ^5(c+d x) \, dx\\ &=-\frac {a \cos ^5(c+d x) \sin ^3(c+d x)}{8 d}+\frac {1}{8} (3 a) \int \cos ^4(c+d x) \sin ^2(c+d x) \, dx-\frac {b \operatorname {Subst}\left (\int x^4 \left (1-x^2\right )^2 \, dx,x,\cos (c+d x)\right )}{d}\\ &=-\frac {a \cos ^5(c+d x) \sin (c+d x)}{16 d}-\frac {a \cos ^5(c+d x) \sin ^3(c+d x)}{8 d}+\frac {1}{16} a \int \cos ^4(c+d x) \, dx-\frac {b \operatorname {Subst}\left (\int \left (x^4-2 x^6+x^8\right ) \, dx,x,\cos (c+d x)\right )}{d}\\ &=-\frac {b \cos ^5(c+d x)}{5 d}+\frac {2 b \cos ^7(c+d x)}{7 d}-\frac {b \cos ^9(c+d x)}{9 d}+\frac {a \cos ^3(c+d x) \sin (c+d x)}{64 d}-\frac {a \cos ^5(c+d x) \sin (c+d x)}{16 d}-\frac {a \cos ^5(c+d x) \sin ^3(c+d x)}{8 d}+\frac {1}{64} (3 a) \int \cos ^2(c+d x) \, dx\\ &=-\frac {b \cos ^5(c+d x)}{5 d}+\frac {2 b \cos ^7(c+d x)}{7 d}-\frac {b \cos ^9(c+d x)}{9 d}+\frac {3 a \cos (c+d x) \sin (c+d x)}{128 d}+\frac {a \cos ^3(c+d x) \sin (c+d x)}{64 d}-\frac {a \cos ^5(c+d x) \sin (c+d x)}{16 d}-\frac {a \cos ^5(c+d x) \sin ^3(c+d x)}{8 d}+\frac {1}{128} (3 a) \int 1 \, dx\\ &=\frac {3 a x}{128}-\frac {b \cos ^5(c+d x)}{5 d}+\frac {2 b \cos ^7(c+d x)}{7 d}-\frac {b \cos ^9(c+d x)}{9 d}+\frac {3 a \cos (c+d x) \sin (c+d x)}{128 d}+\frac {a \cos ^3(c+d x) \sin (c+d x)}{64 d}-\frac {a \cos ^5(c+d x) \sin (c+d x)}{16 d}-\frac {a \cos ^5(c+d x) \sin ^3(c+d x)}{8 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.25, size = 92, normalized size = 0.64 \[ \frac {-2520 a \sin (4 (c+d x))+315 a \sin (8 (c+d x))+7560 a c+7560 a d x-7560 b \cos (c+d x)-1680 b \cos (3 (c+d x))+1008 b \cos (5 (c+d x))+180 b \cos (7 (c+d x))-140 b \cos (9 (c+d x))}{322560 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^4*Sin[c + d*x]^4*(a + b*Sin[c + d*x]),x]

[Out]

(7560*a*c + 7560*a*d*x - 7560*b*Cos[c + d*x] - 1680*b*Cos[3*(c + d*x)] + 1008*b*Cos[5*(c + d*x)] + 180*b*Cos[7
*(c + d*x)] - 140*b*Cos[9*(c + d*x)] - 2520*a*Sin[4*(c + d*x)] + 315*a*Sin[8*(c + d*x)])/(322560*d)

________________________________________________________________________________________

fricas [A]  time = 0.69, size = 95, normalized size = 0.66 \[ -\frac {4480 \, b \cos \left (d x + c\right )^{9} - 11520 \, b \cos \left (d x + c\right )^{7} + 8064 \, b \cos \left (d x + c\right )^{5} - 945 \, a d x - 315 \, {\left (16 \, a \cos \left (d x + c\right )^{7} - 24 \, a \cos \left (d x + c\right )^{5} + 2 \, a \cos \left (d x + c\right )^{3} + 3 \, a \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{40320 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*sin(d*x+c)^4*(a+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/40320*(4480*b*cos(d*x + c)^9 - 11520*b*cos(d*x + c)^7 + 8064*b*cos(d*x + c)^5 - 945*a*d*x - 315*(16*a*cos(d
*x + c)^7 - 24*a*cos(d*x + c)^5 + 2*a*cos(d*x + c)^3 + 3*a*cos(d*x + c))*sin(d*x + c))/d

________________________________________________________________________________________

giac [A]  time = 0.30, size = 107, normalized size = 0.75 \[ \frac {3}{128} \, a x - \frac {b \cos \left (9 \, d x + 9 \, c\right )}{2304 \, d} + \frac {b \cos \left (7 \, d x + 7 \, c\right )}{1792 \, d} + \frac {b \cos \left (5 \, d x + 5 \, c\right )}{320 \, d} - \frac {b \cos \left (3 \, d x + 3 \, c\right )}{192 \, d} - \frac {3 \, b \cos \left (d x + c\right )}{128 \, d} + \frac {a \sin \left (8 \, d x + 8 \, c\right )}{1024 \, d} - \frac {a \sin \left (4 \, d x + 4 \, c\right )}{128 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*sin(d*x+c)^4*(a+b*sin(d*x+c)),x, algorithm="giac")

[Out]

3/128*a*x - 1/2304*b*cos(9*d*x + 9*c)/d + 1/1792*b*cos(7*d*x + 7*c)/d + 1/320*b*cos(5*d*x + 5*c)/d - 1/192*b*c
os(3*d*x + 3*c)/d - 3/128*b*cos(d*x + c)/d + 1/1024*a*sin(8*d*x + 8*c)/d - 1/128*a*sin(4*d*x + 4*c)/d

________________________________________________________________________________________

maple [A]  time = 0.30, size = 124, normalized size = 0.87 \[ \frac {a \left (-\frac {\left (\sin ^{3}\left (d x +c \right )\right ) \left (\cos ^{5}\left (d x +c \right )\right )}{8}-\frac {\sin \left (d x +c \right ) \left (\cos ^{5}\left (d x +c \right )\right )}{16}+\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{64}+\frac {3 d x}{128}+\frac {3 c}{128}\right )+b \left (-\frac {\left (\sin ^{4}\left (d x +c \right )\right ) \left (\cos ^{5}\left (d x +c \right )\right )}{9}-\frac {4 \left (\sin ^{2}\left (d x +c \right )\right ) \left (\cos ^{5}\left (d x +c \right )\right )}{63}-\frac {8 \left (\cos ^{5}\left (d x +c \right )\right )}{315}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*sin(d*x+c)^4*(a+b*sin(d*x+c)),x)

[Out]

1/d*(a*(-1/8*sin(d*x+c)^3*cos(d*x+c)^5-1/16*sin(d*x+c)*cos(d*x+c)^5+1/64*(cos(d*x+c)^3+3/2*cos(d*x+c))*sin(d*x
+c)+3/128*d*x+3/128*c)+b*(-1/9*sin(d*x+c)^4*cos(d*x+c)^5-4/63*sin(d*x+c)^2*cos(d*x+c)^5-8/315*cos(d*x+c)^5))

________________________________________________________________________________________

maxima [A]  time = 0.31, size = 71, normalized size = 0.50 \[ \frac {315 \, {\left (24 \, d x + 24 \, c + \sin \left (8 \, d x + 8 \, c\right ) - 8 \, \sin \left (4 \, d x + 4 \, c\right )\right )} a - 1024 \, {\left (35 \, \cos \left (d x + c\right )^{9} - 90 \, \cos \left (d x + c\right )^{7} + 63 \, \cos \left (d x + c\right )^{5}\right )} b}{322560 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*sin(d*x+c)^4*(a+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/322560*(315*(24*d*x + 24*c + sin(8*d*x + 8*c) - 8*sin(4*d*x + 4*c))*a - 1024*(35*cos(d*x + c)^9 - 90*cos(d*x
 + c)^7 + 63*cos(d*x + c)^5)*b)/d

________________________________________________________________________________________

mupad [B]  time = 13.32, size = 223, normalized size = 1.56 \[ \frac {3\,a\,x}{128}-\frac {-\frac {3\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{17}}{64}-\frac {13\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{15}}{32}+\frac {155\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{13}}{32}+\frac {32\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}}{3}-\frac {169\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}}{32}-16\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}+\frac {112\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8}{5}+\frac {169\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{32}-\frac {32\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{5}-\frac {155\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{32}+\frac {64\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{35}+\frac {13\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{32}+\frac {16\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{35}+\frac {3\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{64}+\frac {16\,b}{315}}{d\,{\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}^9} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^4*sin(c + d*x)^4*(a + b*sin(c + d*x)),x)

[Out]

(3*a*x)/128 - ((16*b)/315 + (3*a*tan(c/2 + (d*x)/2))/64 + (13*a*tan(c/2 + (d*x)/2)^3)/32 - (155*a*tan(c/2 + (d
*x)/2)^5)/32 + (169*a*tan(c/2 + (d*x)/2)^7)/32 - (169*a*tan(c/2 + (d*x)/2)^11)/32 + (155*a*tan(c/2 + (d*x)/2)^
13)/32 - (13*a*tan(c/2 + (d*x)/2)^15)/32 - (3*a*tan(c/2 + (d*x)/2)^17)/64 + (16*b*tan(c/2 + (d*x)/2)^2)/35 + (
64*b*tan(c/2 + (d*x)/2)^4)/35 - (32*b*tan(c/2 + (d*x)/2)^6)/5 + (112*b*tan(c/2 + (d*x)/2)^8)/5 - 16*b*tan(c/2
+ (d*x)/2)^10 + (32*b*tan(c/2 + (d*x)/2)^12)/3)/(d*(tan(c/2 + (d*x)/2)^2 + 1)^9)

________________________________________________________________________________________

sympy [A]  time = 15.15, size = 272, normalized size = 1.90 \[ \begin {cases} \frac {3 a x \sin ^{8}{\left (c + d x \right )}}{128} + \frac {3 a x \sin ^{6}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{32} + \frac {9 a x \sin ^{4}{\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{64} + \frac {3 a x \sin ^{2}{\left (c + d x \right )} \cos ^{6}{\left (c + d x \right )}}{32} + \frac {3 a x \cos ^{8}{\left (c + d x \right )}}{128} + \frac {3 a \sin ^{7}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{128 d} + \frac {11 a \sin ^{5}{\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{128 d} - \frac {11 a \sin ^{3}{\left (c + d x \right )} \cos ^{5}{\left (c + d x \right )}}{128 d} - \frac {3 a \sin {\left (c + d x \right )} \cos ^{7}{\left (c + d x \right )}}{128 d} - \frac {b \sin ^{4}{\left (c + d x \right )} \cos ^{5}{\left (c + d x \right )}}{5 d} - \frac {4 b \sin ^{2}{\left (c + d x \right )} \cos ^{7}{\left (c + d x \right )}}{35 d} - \frac {8 b \cos ^{9}{\left (c + d x \right )}}{315 d} & \text {for}\: d \neq 0 \\x \left (a + b \sin {\relax (c )}\right ) \sin ^{4}{\relax (c )} \cos ^{4}{\relax (c )} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*sin(d*x+c)**4*(a+b*sin(d*x+c)),x)

[Out]

Piecewise((3*a*x*sin(c + d*x)**8/128 + 3*a*x*sin(c + d*x)**6*cos(c + d*x)**2/32 + 9*a*x*sin(c + d*x)**4*cos(c
+ d*x)**4/64 + 3*a*x*sin(c + d*x)**2*cos(c + d*x)**6/32 + 3*a*x*cos(c + d*x)**8/128 + 3*a*sin(c + d*x)**7*cos(
c + d*x)/(128*d) + 11*a*sin(c + d*x)**5*cos(c + d*x)**3/(128*d) - 11*a*sin(c + d*x)**3*cos(c + d*x)**5/(128*d)
 - 3*a*sin(c + d*x)*cos(c + d*x)**7/(128*d) - b*sin(c + d*x)**4*cos(c + d*x)**5/(5*d) - 4*b*sin(c + d*x)**2*co
s(c + d*x)**7/(35*d) - 8*b*cos(c + d*x)**9/(315*d), Ne(d, 0)), (x*(a + b*sin(c))*sin(c)**4*cos(c)**4, True))

________________________________________________________________________________________