3.1147 \(\int \cos (c+d x) \cot ^3(c+d x) \sqrt {a+b \sin (c+d x)} \, dx\)

Optimal. Leaf size=345 \[ -\frac {\left (8 a^2+3 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{12 a^2 d}-\frac {\left (8 a^2+31 b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} F\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{12 b d \sqrt {a+b \sin (c+d x)}}+\frac {\left (8 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{12 a b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {\left (12 a^2+b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{4 a d \sqrt {a+b \sin (c+d x)}}+\frac {b \cot (c+d x) (a+b \sin (c+d x))^{3/2}}{4 a^2 d}-\frac {\cot (c+d x) \csc (c+d x) (a+b \sin (c+d x))^{3/2}}{2 a d} \]

[Out]

1/4*b*cot(d*x+c)*(a+b*sin(d*x+c))^(3/2)/a^2/d-1/2*cot(d*x+c)*csc(d*x+c)*(a+b*sin(d*x+c))^(3/2)/a/d-1/12*(8*a^2
+3*b^2)*cos(d*x+c)*(a+b*sin(d*x+c))^(1/2)/a^2/d-1/12*(8*a^2-3*b^2)*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2
*c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2))*(a+b*sin(d*x+c))^(1/2)/a/b/d/(
(a+b*sin(d*x+c))/(a+b))^(1/2)+1/12*(8*a^2+31*b^2)*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x
)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2))*((a+b*sin(d*x+c))/(a+b))^(1/2)/b/d/(a+b*sin(d*x
+c))^(1/2)+1/4*(12*a^2+b^2)*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticPi(cos(1/2*c
+1/4*Pi+1/2*d*x),2,2^(1/2)*(b/(a+b))^(1/2))*((a+b*sin(d*x+c))/(a+b))^(1/2)/a/d/(a+b*sin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.90, antiderivative size = 345, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.345, Rules used = {2893, 3049, 3059, 2655, 2653, 3002, 2663, 2661, 2807, 2805} \[ -\frac {\left (8 a^2+3 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{12 a^2 d}-\frac {\left (8 a^2+31 b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} F\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{12 b d \sqrt {a+b \sin (c+d x)}}+\frac {\left (8 a^2-3 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{12 a b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {\left (12 a^2+b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{4 a d \sqrt {a+b \sin (c+d x)}}+\frac {b \cot (c+d x) (a+b \sin (c+d x))^{3/2}}{4 a^2 d}-\frac {\cot (c+d x) \csc (c+d x) (a+b \sin (c+d x))^{3/2}}{2 a d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]*Cot[c + d*x]^3*Sqrt[a + b*Sin[c + d*x]],x]

[Out]

-((8*a^2 + 3*b^2)*Cos[c + d*x]*Sqrt[a + b*Sin[c + d*x]])/(12*a^2*d) + (b*Cot[c + d*x]*(a + b*Sin[c + d*x])^(3/
2))/(4*a^2*d) - (Cot[c + d*x]*Csc[c + d*x]*(a + b*Sin[c + d*x])^(3/2))/(2*a*d) + ((8*a^2 - 3*b^2)*EllipticE[(c
 - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[a + b*Sin[c + d*x]])/(12*a*b*d*Sqrt[(a + b*Sin[c + d*x])/(a + b)]) - ((8
*a^2 + 31*b^2)*EllipticF[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/(12*b*d*Sqrt[a
 + b*Sin[c + d*x]]) - ((12*a^2 + b^2)*EllipticPi[2, (c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x
])/(a + b)])/(4*a*d*Sqrt[a + b*Sin[c + d*x]])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2893

Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[(Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(d*Sin[e + f*x])^(n + 1))/(a*d*f*(n + 1)), x] +
 (-Dist[1/(a^2*d^2*(n + 1)*(n + 2)), Int[(a + b*Sin[e + f*x])^m*(d*Sin[e + f*x])^(n + 2)*Simp[a^2*n*(n + 2) -
b^2*(m + n + 2)*(m + n + 3) + a*b*m*Sin[e + f*x] - (a^2*(n + 1)*(n + 2) - b^2*(m + n + 2)*(m + n + 4))*Sin[e +
 f*x]^2, x], x], x] - Simp[(b*(m + n + 2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(d*Sin[e + f*x])^(n + 2))/
(a^2*d^2*f*(n + 1)*(n + 2)), x]) /; FreeQ[{a, b, d, e, f, m}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || Intege
rsQ[2*m, 2*n]) &&  !m < -1 && LtQ[n, -1] && (LtQ[n, -2] || EqQ[m + n + 4, 0])

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3049

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e +
 f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n + 2)), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*x]
)^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n + 2)
 - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + n + 2))*Sin[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2
, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \cos (c+d x) \cot ^3(c+d x) \sqrt {a+b \sin (c+d x)} \, dx &=\frac {b \cot (c+d x) (a+b \sin (c+d x))^{3/2}}{4 a^2 d}-\frac {\cot (c+d x) \csc (c+d x) (a+b \sin (c+d x))^{3/2}}{2 a d}-\frac {\int \csc (c+d x) \sqrt {a+b \sin (c+d x)} \left (\frac {1}{4} \left (12 a^2+b^2\right )+\frac {1}{2} a b \sin (c+d x)-\frac {1}{4} \left (8 a^2+3 b^2\right ) \sin ^2(c+d x)\right ) \, dx}{2 a^2}\\ &=-\frac {\left (8 a^2+3 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{12 a^2 d}+\frac {b \cot (c+d x) (a+b \sin (c+d x))^{3/2}}{4 a^2 d}-\frac {\cot (c+d x) \csc (c+d x) (a+b \sin (c+d x))^{3/2}}{2 a d}-\frac {\int \frac {\csc (c+d x) \left (\frac {3}{8} a \left (12 a^2+b^2\right )+\frac {17}{4} a^2 b \sin (c+d x)-\frac {1}{8} a \left (8 a^2-3 b^2\right ) \sin ^2(c+d x)\right )}{\sqrt {a+b \sin (c+d x)}} \, dx}{3 a^2}\\ &=-\frac {\left (8 a^2+3 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{12 a^2 d}+\frac {b \cot (c+d x) (a+b \sin (c+d x))^{3/2}}{4 a^2 d}-\frac {\cot (c+d x) \csc (c+d x) (a+b \sin (c+d x))^{3/2}}{2 a d}+\frac {\int \frac {\csc (c+d x) \left (-\frac {3}{8} a b \left (12 a^2+b^2\right )-\frac {1}{8} a^2 \left (8 a^2+31 b^2\right ) \sin (c+d x)\right )}{\sqrt {a+b \sin (c+d x)}} \, dx}{3 a^2 b}+\frac {1}{24} \left (\frac {8 a}{b}-\frac {3 b}{a}\right ) \int \sqrt {a+b \sin (c+d x)} \, dx\\ &=-\frac {\left (8 a^2+3 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{12 a^2 d}+\frac {b \cot (c+d x) (a+b \sin (c+d x))^{3/2}}{4 a^2 d}-\frac {\cot (c+d x) \csc (c+d x) (a+b \sin (c+d x))^{3/2}}{2 a d}-\frac {\left (12 a^2+b^2\right ) \int \frac {\csc (c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx}{8 a}-\frac {\left (8 a^2+31 b^2\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}} \, dx}{24 b}+\frac {\left (\left (\frac {8 a}{b}-\frac {3 b}{a}\right ) \sqrt {a+b \sin (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}} \, dx}{24 \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}\\ &=-\frac {\left (8 a^2+3 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{12 a^2 d}+\frac {b \cot (c+d x) (a+b \sin (c+d x))^{3/2}}{4 a^2 d}-\frac {\cot (c+d x) \csc (c+d x) (a+b \sin (c+d x))^{3/2}}{2 a d}+\frac {\left (\frac {8 a}{b}-\frac {3 b}{a}\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{12 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {\left (\left (12 a^2+b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}\right ) \int \frac {\csc (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}} \, dx}{8 a \sqrt {a+b \sin (c+d x)}}-\frac {\left (\left (8 a^2+31 b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}} \, dx}{24 b \sqrt {a+b \sin (c+d x)}}\\ &=-\frac {\left (8 a^2+3 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{12 a^2 d}+\frac {b \cot (c+d x) (a+b \sin (c+d x))^{3/2}}{4 a^2 d}-\frac {\cot (c+d x) \csc (c+d x) (a+b \sin (c+d x))^{3/2}}{2 a d}+\frac {\left (\frac {8 a}{b}-\frac {3 b}{a}\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{12 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {\left (8 a^2+31 b^2\right ) F\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{12 b d \sqrt {a+b \sin (c+d x)}}-\frac {\left (12 a^2+b^2\right ) \Pi \left (2;\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{4 a d \sqrt {a+b \sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 3.58, size = 450, normalized size = 1.30 \[ \frac {\frac {2 \left (64 a^2+9 b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \Pi \left (2;\frac {1}{4} (-2 c-2 d x+\pi )|\frac {2 b}{a+b}\right )}{a \sqrt {a+b \sin (c+d x)}}+\frac {2 i \left (8 a^2-3 b^2\right ) \cos (2 (c+d x)) \csc ^2(c+d x) \sec (c+d x) \sqrt {-\frac {b (\sin (c+d x)-1)}{a+b}} \sqrt {-\frac {b (\sin (c+d x)+1)}{a-b}} \left (2 a (a-b) E\left (i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (2 a F\left (i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (c+d x)}\right )|\frac {a+b}{a-b}\right )-b \Pi \left (\frac {a+b}{a};i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (c+d x)}\right )|\frac {a+b}{a-b}\right )\right )\right )}{a^2 b^2 \sqrt {-\frac {1}{a+b}} \left (\csc ^2(c+d x)-2\right )}+\frac {136 b \sqrt {\frac {a+b \sin (c+d x)}{a+b}} F\left (\frac {1}{4} (-2 c-2 d x+\pi )|\frac {2 b}{a+b}\right )}{\sqrt {a+b \sin (c+d x)}}-\frac {4 \sqrt {a+b \sin (c+d x)} (3 \cot (c+d x) (2 a \csc (c+d x)+b)+8 a \cos (c+d x))}{a}}{48 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]*Cot[c + d*x]^3*Sqrt[a + b*Sin[c + d*x]],x]

[Out]

(((2*I)*(8*a^2 - 3*b^2)*Cos[2*(c + d*x)]*Csc[c + d*x]^2*(2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*S
qrt[a + b*Sin[c + d*x]]], (a + b)/(a - b)] + b*(2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Sin[c +
 d*x]]], (a + b)/(a - b)] - b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Sin[c + d*x]]], (
a + b)/(a - b)]))*Sec[c + d*x]*Sqrt[-((b*(-1 + Sin[c + d*x]))/(a + b))]*Sqrt[-((b*(1 + Sin[c + d*x]))/(a - b))
])/(a^2*b^2*Sqrt[-(a + b)^(-1)]*(-2 + Csc[c + d*x]^2)) - (4*(8*a*Cos[c + d*x] + 3*Cot[c + d*x]*(b + 2*a*Csc[c
+ d*x]))*Sqrt[a + b*Sin[c + d*x]])/a + (136*b*EllipticF[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[
c + d*x])/(a + b)])/Sqrt[a + b*Sin[c + d*x]] + (2*(64*a^2 + 9*b^2)*EllipticPi[2, (-2*c + Pi - 2*d*x)/4, (2*b)/
(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/(a*Sqrt[a + b*Sin[c + d*x]]))/(48*d)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*cot(d*x+c)^3*(a+b*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*cot(d*x+c)^3*(a+b*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 2.07, size = 1364, normalized size = 3.95 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*cot(d*x+c)^3*(a+b*sin(d*x+c))^(1/2),x)

[Out]

1/12*(8*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*Ellipti
cF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^4*b*sin(d*x+c)^2-42*b^2*((a+b*sin(d*x+c))/(a-b))^(1/2
)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a
-b)/(a+b))^(1/2))*a^3*sin(d*x+c)^2+31*b^3*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+
sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)^2+3*((
a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*s
in(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a*b^4*sin(d*x+c)^2-8*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)
-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2
))*a^5*sin(d*x+c)^2+11*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b)
)^(1/2)*EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^3*b^2*sin(d*x+c)^2-3*((a+b*sin(d*x+c))
/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticE(((a+b*sin(d*x+c))/(a-b
))^(1/2),((a-b)/(a+b))^(1/2))*a*b^4*sin(d*x+c)^2+36*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(
1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*b^2*EllipticPi(((a+b*sin(d*x+c))/(a-b))^(1/2),(a-b)/a,((a-b)/(a+b))^(1/2)
)*a^3*sin(d*x+c)^2-36*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))
^(1/2)*b^3*EllipticPi(((a+b*sin(d*x+c))/(a-b))^(1/2),(a-b)/a,((a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)^2+3*((a+b*sin
(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticPi(((a+b*sin(d*x
+c))/(a-b))^(1/2),(a-b)/a,((a-b)/(a+b))^(1/2))*a*b^4*sin(d*x+c)^2-3*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+
c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticPi(((a+b*sin(d*x+c))/(a-b))^(1/2),(a-b)/a,((a-b)/
(a+b))^(1/2))*b^5*sin(d*x+c)^2+8*a^2*b^3*sin(d*x+c)^5+8*a^3*b^2*sin(d*x+c)^4+3*a*b^4*sin(d*x+c)^4+a^2*b^3*sin(
d*x+c)^3-2*a^3*b^2*sin(d*x+c)^2-3*a*b^4*sin(d*x+c)^2-9*a^2*b^3*sin(d*x+c)-6*a^3*b^2)/a^2/b^2/sin(d*x+c)^2/cos(
d*x+c)/(a+b*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \sin \left (d x + c\right ) + a} \cos \left (d x + c\right ) \cot \left (d x + c\right )^{3}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*cot(d*x+c)^3*(a+b*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sin(d*x + c) + a)*cos(d*x + c)*cot(d*x + c)^3, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \cos \left (c+d\,x\right )\,{\mathrm {cot}\left (c+d\,x\right )}^3\,\sqrt {a+b\,\sin \left (c+d\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)*cot(c + d*x)^3*(a + b*sin(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)*cot(c + d*x)^3*(a + b*sin(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a + b \sin {\left (c + d x \right )}} \cos {\left (c + d x \right )} \cot ^{3}{\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*cot(d*x+c)**3*(a+b*sin(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*sin(c + d*x))*cos(c + d*x)*cot(c + d*x)**3, x)

________________________________________________________________________________________