3.145 \(\int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{5/2}} \, dx\)

Optimal. Leaf size=186 \[ \frac {42 c^2 g \sqrt {\cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{5 a^2 f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {28 c^2 (g \cos (e+f x))^{5/2}}{5 a f g (a \sin (e+f x)+a)^{3/2} \sqrt {c-c \sin (e+f x)}}-\frac {4 c \sqrt {c-c \sin (e+f x)} (g \cos (e+f x))^{5/2}}{5 f g (a \sin (e+f x)+a)^{5/2}} \]

[Out]

28/5*c^2*(g*cos(f*x+e))^(5/2)/a/f/g/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2)+42/5*c^2*g*(cos(1/2*f*x+1/2*
e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticE(sin(1/2*f*x+1/2*e),2^(1/2))*cos(f*x+e)^(1/2)*(g*cos(f*x+e))^(1/2)/a^2
/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)-4/5*c*(g*cos(f*x+e))^(5/2)*(c-c*sin(f*x+e))^(1/2)/f/g/(a+a*si
n(f*x+e))^(5/2)

________________________________________________________________________________________

Rubi [A]  time = 0.85, antiderivative size = 186, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {2850, 2842, 2640, 2639} \[ \frac {42 c^2 g \sqrt {\cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{5 a^2 f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {28 c^2 (g \cos (e+f x))^{5/2}}{5 a f g (a \sin (e+f x)+a)^{3/2} \sqrt {c-c \sin (e+f x)}}-\frac {4 c \sqrt {c-c \sin (e+f x)} (g \cos (e+f x))^{5/2}}{5 f g (a \sin (e+f x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[((g*Cos[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2))/(a + a*Sin[e + f*x])^(5/2),x]

[Out]

(28*c^2*(g*Cos[e + f*x])^(5/2))/(5*a*f*g*(a + a*Sin[e + f*x])^(3/2)*Sqrt[c - c*Sin[e + f*x]]) + (42*c^2*g*Sqrt
[Cos[e + f*x]]*Sqrt[g*Cos[e + f*x]]*EllipticE[(e + f*x)/2, 2])/(5*a^2*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Si
n[e + f*x]]) - (4*c*(g*Cos[e + f*x])^(5/2)*Sqrt[c - c*Sin[e + f*x]])/(5*f*g*(a + a*Sin[e + f*x])^(5/2))

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2842

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(g*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), In
t[(g*Cos[e + f*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2
, 0]

Rule 2850

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e
 + f*x])^n)/(f*g*(2*n + p + 1)), x] - Dist[(b*(2*m + p - 1))/(d*(2*n + p + 1)), Int[(g*Cos[e + f*x])^p*(a + b*
Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c +
a*d, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 0] && LtQ[n, -1] && NeQ[2*n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]

Rubi steps

\begin {align*} \int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{5/2}} \, dx &=-\frac {4 c (g \cos (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}{5 f g (a+a \sin (e+f x))^{5/2}}-\frac {(7 c) \int \frac {(g \cos (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx}{5 a}\\ &=\frac {28 c^2 (g \cos (e+f x))^{5/2}}{5 a f g (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}-\frac {4 c (g \cos (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}{5 f g (a+a \sin (e+f x))^{5/2}}+\frac {\left (21 c^2\right ) \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx}{5 a^2}\\ &=\frac {28 c^2 (g \cos (e+f x))^{5/2}}{5 a f g (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}-\frac {4 c (g \cos (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}{5 f g (a+a \sin (e+f x))^{5/2}}+\frac {\left (21 c^2 g \cos (e+f x)\right ) \int \sqrt {g \cos (e+f x)} \, dx}{5 a^2 \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=\frac {28 c^2 (g \cos (e+f x))^{5/2}}{5 a f g (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}-\frac {4 c (g \cos (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}{5 f g (a+a \sin (e+f x))^{5/2}}+\frac {\left (21 c^2 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)}\right ) \int \sqrt {\cos (e+f x)} \, dx}{5 a^2 \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=\frac {28 c^2 (g \cos (e+f x))^{5/2}}{5 a f g (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}+\frac {42 c^2 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{5 a^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}-\frac {4 c (g \cos (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}{5 f g (a+a \sin (e+f x))^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.16, size = 180, normalized size = 0.97 \[ \frac {c \sqrt {\cos (e+f x)} \sqrt {c-c \sin (e+f x)} (g \cos (e+f x))^{3/2} \left (8 \sqrt {\cos (e+f x)} \left (-\sin \left (\frac {1}{2} (e+f x)\right )+2 \sin \left (\frac {3}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )+2 \cos \left (\frac {3}{2} (e+f x)\right )\right )+42 E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \left (\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )\right )^3\right )}{5 f (a (\sin (e+f x)+1))^{5/2} \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^3} \]

Antiderivative was successfully verified.

[In]

Integrate[((g*Cos[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2))/(a + a*Sin[e + f*x])^(5/2),x]

[Out]

(c*Sqrt[Cos[e + f*x]]*(g*Cos[e + f*x])^(3/2)*Sqrt[c - c*Sin[e + f*x]]*(42*EllipticE[(e + f*x)/2, 2]*(Cos[(e +
f*x)/2] + Sin[(e + f*x)/2])^3 + 8*Sqrt[Cos[e + f*x]]*(Cos[(e + f*x)/2] + 2*Cos[(3*(e + f*x))/2] - Sin[(e + f*x
)/2] + 2*Sin[(3*(e + f*x))/2])))/(5*f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^3*(a*(1 + Sin[e + f*x]))^(5/2))

________________________________________________________________________________________

fricas [F]  time = 0.51, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (c g \cos \left (f x + e\right ) \sin \left (f x + e\right ) - c g \cos \left (f x + e\right )\right )} \sqrt {g \cos \left (f x + e\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{3 \, a^{3} \cos \left (f x + e\right )^{2} - 4 \, a^{3} + {\left (a^{3} \cos \left (f x + e\right )^{2} - 4 \, a^{3}\right )} \sin \left (f x + e\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

integral((c*g*cos(f*x + e)*sin(f*x + e) - c*g*cos(f*x + e))*sqrt(g*cos(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt
(-c*sin(f*x + e) + c)/(3*a^3*cos(f*x + e)^2 - 4*a^3 + (a^3*cos(f*x + e)^2 - 4*a^3)*sin(f*x + e)), x)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(5/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [C]  time = 0.56, size = 3497, normalized size = 18.80 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*cos(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(5/2),x)

[Out]

2/5/f*(-1+cos(f*x+e))*(38*cos(f*x+e)^2+10*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)*ln(-2*(2*cos(f*x+e)^2*(-cos(f*x
+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)-
10*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)*ln(-(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+
2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)-10*cos(f*x+e)^4*(-cos(f*x+e)/(cos(f*x+e)+
1)^2)^(3/2)*ln(-2*(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e
)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)-21*I*cos(f*x+e)^3*sin(f*x+e)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(
cos(f*x+e)+1))^(1/2)*EllipticE(I*(-1+cos(f*x+e))/sin(f*x+e),I)-9*cos(f*x+e)^3-5*cos(f*x+e)^4-5*cos(f*x+e)^5*(-
cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)*ln(-2*(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*c
os(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)+5*cos(f*x+e)^5*(-cos(f*x+e)/(cos(f*x+e)+1)^2
)^(3/2)*ln(-(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos
(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)+5*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)*ln(-2*(2*cos(f*x+e)^2*(-cos(f*x+e)
/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)*sin
(f*x+e)*cos(f*x+e)^4-5*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)*ln(-(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)
^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)*sin(f*x+e)*cos(f*x+e)
^4+10*cos(f*x+e)^3*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)*ln(-2*(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(
1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)-10*cos(f*x+e)^3*(-cos(f
*x+e)/(cos(f*x+e)+1)^2)^(3/2)*ln(-(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+
e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)+40*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2
)*ln(-2*(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x
+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)-40*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)*ln(-(2*cos(f*x+e)^2*(-co
s(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e
)^2)+46*cos(f*x+e)^2*sin(f*x+e)+10*ln(-2*(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*c
os(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)*sin(f*x
+e)-10*ln(-(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(
f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)*sin(f*x+e)+35*cos(f*x+e)*(-cos(f*x+e)
/(cos(f*x+e)+1)^2)^(3/2)*ln(-2*(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-
2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)-35*cos(f*x+e)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)*ln(
-(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^
2)^(1/2)-1)/sin(f*x+e)^2)+10*cos(f*x+e)^4*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)*ln(-(2*cos(f*x+e)^2*(-cos(f*x+e
)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)-5*
sin(f*x+e)*cos(f*x+e)^3+25*sin(f*x+e)*cos(f*x+e)^3*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)*ln(-2*(2*cos(f*x+e)^2*
(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f
*x+e)^2)-25*sin(f*x+e)*cos(f*x+e)^3*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)*ln(-(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos
(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)+45*sin(f
*x+e)*cos(f*x+e)^2*ln(-2*(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-co
s(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)-45*sin(f*x+e)*cos(f*x+e
)^2*ln(-(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x
+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)+35*sin(f*x+e)*cos(f*x+e)*ln(-2*(2*cos(f*
x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1
)/sin(f*x+e)^2)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)-35*sin(f*x+e)*cos(f*x+e)*ln(-(2*cos(f*x+e)^2*(-cos(f*x+e)
/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)*(-c
os(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)+63*I*cos(f*x+e)^2*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)
*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)-63*I*cos(f*x+e)^2*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+
1))^(1/2)*EllipticE(I*(-1+cos(f*x+e))/sin(f*x+e),I)-21*I*cos(f*x+e)^4*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(co
s(f*x+e)+1))^(1/2)*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)+21*I*cos(f*x+e)^3*sin(f*x+e)*(1/(cos(f*x+e)+1))^(
1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)+21*I*cos(f*x+e)^4*(1/(cos(f*x
+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*EllipticE(I*(-1+cos(f*x+e))/sin(f*x+e),I)+42*I*cos(f*x+e)*(1/(
cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)-42*I*cos(f*x+
e)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*EllipticE(I*(-1+cos(f*x+e))/sin(f*x+e),I)-42*I*s
in(f*x+e)*cos(f*x+e)*EllipticE(I*(-1+cos(f*x+e))/sin(f*x+e),I)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e
)+1))^(1/2)+42*I*cos(f*x+e)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*EllipticF(I*(-1+cos(f*x
+e))/sin(f*x+e),I)*sin(f*x+e)-63*I*cos(f*x+e)^2*sin(f*x+e)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1)
)^(1/2)*EllipticE(I*(-1+cos(f*x+e))/sin(f*x+e),I)+63*I*cos(f*x+e)^2*sin(f*x+e)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f
*x+e)/(cos(f*x+e)+1))^(1/2)*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e),I))*(g*cos(f*x+e))^(3/2)*(-c*(sin(f*x+e)-1)
)^(3/2)/(cos(f*x+e)^2*sin(f*x+e)+cos(f*x+e)^3+2*sin(f*x+e)*cos(f*x+e)-3*cos(f*x+e)^2-4*sin(f*x+e)-2*cos(f*x+e)
+4)/sin(f*x+e)/cos(f*x+e)/(a*(1+sin(f*x+e)))^(5/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

integrate((g*cos(f*x + e))^(3/2)*(-c*sin(f*x + e) + c)^(3/2)/(a*sin(f*x + e) + a)^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{3/2}}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((g*cos(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(3/2))/(a + a*sin(e + f*x))^(5/2),x)

[Out]

int(((g*cos(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(3/2))/(a + a*sin(e + f*x))^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))**(3/2)*(c-c*sin(f*x+e))**(3/2)/(a+a*sin(f*x+e))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________