3.1467 \(\int \frac {\sec (c+d x) \tan (c+d x)}{(a+b \sin (c+d x))^2} \, dx\)

Optimal. Leaf size=133 \[ \frac {2 b \left (2 a^2+b^2\right ) \tan ^{-1}\left (\frac {a \tan \left (\frac {1}{2} (c+d x)\right )+b}{\sqrt {a^2-b^2}}\right )}{d \left (a^2-b^2\right )^{5/2}}+\frac {\sec (c+d x) \left (2 a^2-3 a b \sin (c+d x)+b^2\right )}{d \left (a^2-b^2\right )^2}-\frac {a \sec (c+d x)}{d \left (a^2-b^2\right ) (a+b \sin (c+d x))} \]

[Out]

2*b*(2*a^2+b^2)*arctan((b+a*tan(1/2*d*x+1/2*c))/(a^2-b^2)^(1/2))/(a^2-b^2)^(5/2)/d-a*sec(d*x+c)/(a^2-b^2)/d/(a
+b*sin(d*x+c))+sec(d*x+c)*(2*a^2+b^2-3*a*b*sin(d*x+c))/(a^2-b^2)^2/d

________________________________________________________________________________________

Rubi [A]  time = 0.21, antiderivative size = 133, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {2864, 2866, 12, 2660, 618, 204} \[ \frac {2 b \left (2 a^2+b^2\right ) \tan ^{-1}\left (\frac {a \tan \left (\frac {1}{2} (c+d x)\right )+b}{\sqrt {a^2-b^2}}\right )}{d \left (a^2-b^2\right )^{5/2}}+\frac {\sec (c+d x) \left (2 a^2-3 a b \sin (c+d x)+b^2\right )}{d \left (a^2-b^2\right )^2}-\frac {a \sec (c+d x)}{d \left (a^2-b^2\right ) (a+b \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]*Tan[c + d*x])/(a + b*Sin[c + d*x])^2,x]

[Out]

(2*b*(2*a^2 + b^2)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/((a^2 - b^2)^(5/2)*d) - (a*Sec[c + d*x])/
((a^2 - b^2)*d*(a + b*Sin[c + d*x])) + (Sec[c + d*x]*(2*a^2 + b^2 - 3*a*b*Sin[c + d*x]))/((a^2 - b^2)^2*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 2864

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> -Simp[((b*c - a*d)*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1))/(f*g*(a
^2 - b^2)*(m + 1)), x] + Dist[1/((a^2 - b^2)*(m + 1)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1)*Sim
p[(a*c - b*d)*(m + 1) - (b*c - a*d)*(m + p + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x]
 && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rule 2866

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[((g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)*(b*c - a*d - (a*c -
b*d)*Sin[e + f*x]))/(f*g*(a^2 - b^2)*(p + 1)), x] + Dist[1/(g^2*(a^2 - b^2)*(p + 1)), Int[(g*Cos[e + f*x])^(p
+ 2)*(a + b*Sin[e + f*x])^m*Simp[c*(a^2*(p + 2) - b^2*(m + p + 2)) + a*b*d*m + b*(a*c - b*d)*(m + p + 3)*Sin[e
 + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && LtQ[p, -1] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \frac {\sec (c+d x) \tan (c+d x)}{(a+b \sin (c+d x))^2} \, dx &=-\frac {a \sec (c+d x)}{\left (a^2-b^2\right ) d (a+b \sin (c+d x))}+\frac {\int \frac {\sec ^2(c+d x) (b-2 a \sin (c+d x))}{a+b \sin (c+d x)} \, dx}{-a^2+b^2}\\ &=-\frac {a \sec (c+d x)}{\left (a^2-b^2\right ) d (a+b \sin (c+d x))}+\frac {\sec (c+d x) \left (2 a^2+b^2-3 a b \sin (c+d x)\right )}{\left (a^2-b^2\right )^2 d}+\frac {\int \frac {2 a^2 b+b^3}{a+b \sin (c+d x)} \, dx}{\left (a^2-b^2\right )^2}\\ &=-\frac {a \sec (c+d x)}{\left (a^2-b^2\right ) d (a+b \sin (c+d x))}+\frac {\sec (c+d x) \left (2 a^2+b^2-3 a b \sin (c+d x)\right )}{\left (a^2-b^2\right )^2 d}+\frac {\left (b \left (2 a^2+b^2\right )\right ) \int \frac {1}{a+b \sin (c+d x)} \, dx}{\left (a^2-b^2\right )^2}\\ &=-\frac {a \sec (c+d x)}{\left (a^2-b^2\right ) d (a+b \sin (c+d x))}+\frac {\sec (c+d x) \left (2 a^2+b^2-3 a b \sin (c+d x)\right )}{\left (a^2-b^2\right )^2 d}+\frac {\left (2 b \left (2 a^2+b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{\left (a^2-b^2\right )^2 d}\\ &=-\frac {a \sec (c+d x)}{\left (a^2-b^2\right ) d (a+b \sin (c+d x))}+\frac {\sec (c+d x) \left (2 a^2+b^2-3 a b \sin (c+d x)\right )}{\left (a^2-b^2\right )^2 d}-\frac {\left (4 b \left (2 a^2+b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac {1}{2} (c+d x)\right )\right )}{\left (a^2-b^2\right )^2 d}\\ &=\frac {2 b \left (2 a^2+b^2\right ) \tan ^{-1}\left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{\left (a^2-b^2\right )^{5/2} d}-\frac {a \sec (c+d x)}{\left (a^2-b^2\right ) d (a+b \sin (c+d x))}+\frac {\sec (c+d x) \left (2 a^2+b^2-3 a b \sin (c+d x)\right )}{\left (a^2-b^2\right )^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.86, size = 169, normalized size = 1.27 \[ \frac {\frac {2 b \left (2 a^2+b^2\right ) \tan ^{-1}\left (\frac {a \tan \left (\frac {1}{2} (c+d x)\right )+b}{\sqrt {a^2-b^2}}\right )}{\left (a^2-b^2\right )^{5/2}}+\frac {a b^2 \cos (c+d x)}{(a-b)^2 (a+b)^2 (a+b \sin (c+d x))}+\sin \left (\frac {1}{2} (c+d x)\right ) \left (\frac {1}{(a+b)^2 \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )}-\frac {1}{(a-b)^2 \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]*Tan[c + d*x])/(a + b*Sin[c + d*x])^2,x]

[Out]

((2*b*(2*a^2 + b^2)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^2 - b^2)^(5/2) + Sin[(c + d*x)/2]*(1/
((a + b)^2*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])) - 1/((a - b)^2*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))) + (a*
b^2*Cos[c + d*x])/((a - b)^2*(a + b)^2*(a + b*Sin[c + d*x])))/d

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 557, normalized size = 4.19 \[ \left [\frac {2 \, a^{5} - 4 \, a^{3} b^{2} + 2 \, a b^{4} + 6 \, {\left (a^{3} b^{2} - a b^{4}\right )} \cos \left (d x + c\right )^{2} - {\left ({\left (2 \, a^{2} b^{2} + b^{4}\right )} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + {\left (2 \, a^{3} b + a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}} \log \left (\frac {{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2} + 2 \, {\left (a \cos \left (d x + c\right ) \sin \left (d x + c\right ) + b \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}}}{b^{2} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2}}\right ) - 2 \, {\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{6} b - 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} - b^{7}\right )} d \cos \left (d x + c\right ) \sin \left (d x + c\right ) + {\left (a^{7} - 3 \, a^{5} b^{2} + 3 \, a^{3} b^{4} - a b^{6}\right )} d \cos \left (d x + c\right )\right )}}, \frac {a^{5} - 2 \, a^{3} b^{2} + a b^{4} + 3 \, {\left (a^{3} b^{2} - a b^{4}\right )} \cos \left (d x + c\right )^{2} - {\left ({\left (2 \, a^{2} b^{2} + b^{4}\right )} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + {\left (2 \, a^{3} b + a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \sin \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \cos \left (d x + c\right )}\right ) - {\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} \sin \left (d x + c\right )}{{\left (a^{6} b - 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} - b^{7}\right )} d \cos \left (d x + c\right ) \sin \left (d x + c\right ) + {\left (a^{7} - 3 \, a^{5} b^{2} + 3 \, a^{3} b^{4} - a b^{6}\right )} d \cos \left (d x + c\right )}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*sin(d*x+c)/(a+b*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

[1/2*(2*a^5 - 4*a^3*b^2 + 2*a*b^4 + 6*(a^3*b^2 - a*b^4)*cos(d*x + c)^2 - ((2*a^2*b^2 + b^4)*cos(d*x + c)*sin(d
*x + c) + (2*a^3*b + a*b^3)*cos(d*x + c))*sqrt(-a^2 + b^2)*log(((2*a^2 - b^2)*cos(d*x + c)^2 - 2*a*b*sin(d*x +
 c) - a^2 - b^2 + 2*(a*cos(d*x + c)*sin(d*x + c) + b*cos(d*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d*x + c)^2 - 2*a
*b*sin(d*x + c) - a^2 - b^2)) - 2*(a^4*b - 2*a^2*b^3 + b^5)*sin(d*x + c))/((a^6*b - 3*a^4*b^3 + 3*a^2*b^5 - b^
7)*d*cos(d*x + c)*sin(d*x + c) + (a^7 - 3*a^5*b^2 + 3*a^3*b^4 - a*b^6)*d*cos(d*x + c)), (a^5 - 2*a^3*b^2 + a*b
^4 + 3*(a^3*b^2 - a*b^4)*cos(d*x + c)^2 - ((2*a^2*b^2 + b^4)*cos(d*x + c)*sin(d*x + c) + (2*a^3*b + a*b^3)*cos
(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*sin(d*x + c) + b)/(sqrt(a^2 - b^2)*cos(d*x + c))) - (a^4*b - 2*a^2*b^3 +
 b^5)*sin(d*x + c))/((a^6*b - 3*a^4*b^3 + 3*a^2*b^5 - b^7)*d*cos(d*x + c)*sin(d*x + c) + (a^7 - 3*a^5*b^2 + 3*
a^3*b^4 - a*b^6)*d*cos(d*x + c))]

________________________________________________________________________________________

giac [A]  time = 0.22, size = 243, normalized size = 1.83 \[ \frac {2 \, {\left (\frac {{\left (2 \, a^{2} b + b^{3}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\relax (a) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + b}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {a^{2} - b^{2}}} + \frac {2 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 4 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 3 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - a^{3} - 2 \, a b^{2}}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 2 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - a\right )} {\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )}}\right )}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*sin(d*x+c)/(a+b*sin(d*x+c))^2,x, algorithm="giac")

[Out]

2*((2*a^2*b + b^3)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(a) + arctan((a*tan(1/2*d*x + 1/2*c) + b)/sqrt(a^2 - b
^2)))/((a^4 - 2*a^2*b^2 + b^4)*sqrt(a^2 - b^2)) + (2*a^2*b*tan(1/2*d*x + 1/2*c)^3 + b^3*tan(1/2*d*x + 1/2*c)^3
 - a^3*tan(1/2*d*x + 1/2*c)^2 + 4*a*b^2*tan(1/2*d*x + 1/2*c)^2 - 3*b^3*tan(1/2*d*x + 1/2*c) - a^3 - 2*a*b^2)/(
(a*tan(1/2*d*x + 1/2*c)^4 + 2*b*tan(1/2*d*x + 1/2*c)^3 - 2*b*tan(1/2*d*x + 1/2*c) - a)*(a^4 - 2*a^2*b^2 + b^4)
))/d

________________________________________________________________________________________

maple [B]  time = 0.44, size = 280, normalized size = 2.11 \[ -\frac {1}{d \left (a +b \right )^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {1}{d \left (a -b \right )^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {2 b^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d \left (a -b \right )^{2} \left (a +b \right )^{2} \left (\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) b +a \right )}+\frac {2 b^{2} a}{d \left (a -b \right )^{2} \left (a +b \right )^{2} \left (\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) b +a \right )}+\frac {4 a^{2} b \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{d \left (a -b \right )^{2} \left (a +b \right )^{2} \sqrt {a^{2}-b^{2}}}+\frac {2 b^{3} \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{d \left (a -b \right )^{2} \left (a +b \right )^{2} \sqrt {a^{2}-b^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*sin(d*x+c)/(a+b*sin(d*x+c))^2,x)

[Out]

-1/d/(a+b)^2/(tan(1/2*d*x+1/2*c)-1)+1/d/(a-b)^2/(tan(1/2*d*x+1/2*c)+1)+2/d*b^3/(a-b)^2/(a+b)^2/(tan(1/2*d*x+1/
2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)*tan(1/2*d*x+1/2*c)+2/d*b^2/(a-b)^2/(a+b)^2/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/
2*d*x+1/2*c)*b+a)*a+4/d*a^2/(a-b)^2/(a+b)^2*b/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2
)^(1/2))+2/d*b^3/(a-b)^2/(a+b)^2/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*sin(d*x+c)/(a+b*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more details)Is 4*b^2-4*a^2 positive or negative?

________________________________________________________________________________________

mupad [B]  time = 16.32, size = 310, normalized size = 2.33 \[ \frac {\frac {6\,b^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{{\left (a^2-b^2\right )}^2}+\frac {2\,a\,\left (a^2+2\,b^2\right )}{{\left (a^2-b^2\right )}^2}-\frac {2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (4\,a\,b^2-a^3\right )}{a^4-2\,a^2\,b^2+b^4}-\frac {2\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (2\,a^2+b^2\right )}{{\left (a^2-b^2\right )}^2}}{d\,\left (-a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-2\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+2\,b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+a\right )}+\frac {2\,b\,\mathrm {atan}\left (\frac {\frac {b\,\left (2\,a^2+b^2\right )\,\left (2\,a^4\,b-4\,a^2\,b^3+2\,b^5\right )}{{\left (a+b\right )}^{5/2}\,{\left (a-b\right )}^{5/2}}+\frac {2\,a\,b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (2\,a^2+b^2\right )\,\left (a^4-2\,a^2\,b^2+b^4\right )}{{\left (a+b\right )}^{5/2}\,{\left (a-b\right )}^{5/2}}}{4\,a^2\,b+2\,b^3}\right )\,\left (2\,a^2+b^2\right )}{d\,{\left (a+b\right )}^{5/2}\,{\left (a-b\right )}^{5/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(c + d*x)/(cos(c + d*x)^2*(a + b*sin(c + d*x))^2),x)

[Out]

((6*b^3*tan(c/2 + (d*x)/2))/(a^2 - b^2)^2 + (2*a*(a^2 + 2*b^2))/(a^2 - b^2)^2 - (2*tan(c/2 + (d*x)/2)^2*(4*a*b
^2 - a^3))/(a^4 + b^4 - 2*a^2*b^2) - (2*b*tan(c/2 + (d*x)/2)^3*(2*a^2 + b^2))/(a^2 - b^2)^2)/(d*(a + 2*b*tan(c
/2 + (d*x)/2) - a*tan(c/2 + (d*x)/2)^4 - 2*b*tan(c/2 + (d*x)/2)^3)) + (2*b*atan(((b*(2*a^2 + b^2)*(2*a^4*b + 2
*b^5 - 4*a^2*b^3))/((a + b)^(5/2)*(a - b)^(5/2)) + (2*a*b*tan(c/2 + (d*x)/2)*(2*a^2 + b^2)*(a^4 + b^4 - 2*a^2*
b^2))/((a + b)^(5/2)*(a - b)^(5/2)))/(4*a^2*b + 2*b^3))*(2*a^2 + b^2))/(d*(a + b)^(5/2)*(a - b)^(5/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sin {\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}}{\left (a + b \sin {\left (c + d x \right )}\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*sin(d*x+c)/(a+b*sin(d*x+c))**2,x)

[Out]

Integral(sin(c + d*x)*sec(c + d*x)**2/(a + b*sin(c + d*x))**2, x)

________________________________________________________________________________________