3.229 \(\int \frac {\cot (c+d x) \csc (c+d x)}{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=46 \[ -\frac {\csc (c+d x)}{a d}-\frac {\log (\sin (c+d x))}{a d}+\frac {\log (\sin (c+d x)+1)}{a d} \]

[Out]

-csc(d*x+c)/a/d-ln(sin(d*x+c))/a/d+ln(1+sin(d*x+c))/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 46, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {2833, 12, 44} \[ -\frac {\csc (c+d x)}{a d}-\frac {\log (\sin (c+d x))}{a d}+\frac {\log (\sin (c+d x)+1)}{a d} \]

Antiderivative was successfully verified.

[In]

Int[(Cot[c + d*x]*Csc[c + d*x])/(a + a*Sin[c + d*x]),x]

[Out]

-(Csc[c + d*x]/(a*d)) - Log[Sin[c + d*x]]/(a*d) + Log[1 + Sin[c + d*x]]/(a*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 2833

Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_.), x_Symbol] :> Dist[1/(b*f), Subst[Int[(a + x)^m*(c + (d*x)/b)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[
{a, b, c, d, e, f, m, n}, x]

Rubi steps

\begin {align*} \int \frac {\cot (c+d x) \csc (c+d x)}{a+a \sin (c+d x)} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {a^2}{x^2 (a+x)} \, dx,x,a \sin (c+d x)\right )}{a d}\\ &=\frac {a \operatorname {Subst}\left (\int \frac {1}{x^2 (a+x)} \, dx,x,a \sin (c+d x)\right )}{d}\\ &=\frac {a \operatorname {Subst}\left (\int \left (\frac {1}{a x^2}-\frac {1}{a^2 x}+\frac {1}{a^2 (a+x)}\right ) \, dx,x,a \sin (c+d x)\right )}{d}\\ &=-\frac {\csc (c+d x)}{a d}-\frac {\log (\sin (c+d x))}{a d}+\frac {\log (1+\sin (c+d x))}{a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 46, normalized size = 1.00 \[ -\frac {\csc (c+d x)}{a d}-\frac {\log (\sin (c+d x))}{a d}+\frac {\log (\sin (c+d x)+1)}{a d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cot[c + d*x]*Csc[c + d*x])/(a + a*Sin[c + d*x]),x]

[Out]

-(Csc[c + d*x]/(a*d)) - Log[Sin[c + d*x]]/(a*d) + Log[1 + Sin[c + d*x]]/(a*d)

________________________________________________________________________________________

fricas [A]  time = 0.50, size = 51, normalized size = 1.11 \[ -\frac {\log \left (\frac {1}{2} \, \sin \left (d x + c\right )\right ) \sin \left (d x + c\right ) - \log \left (\sin \left (d x + c\right ) + 1\right ) \sin \left (d x + c\right ) + 1}{a d \sin \left (d x + c\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*csc(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

-(log(1/2*sin(d*x + c))*sin(d*x + c) - log(sin(d*x + c) + 1)*sin(d*x + c) + 1)/(a*d*sin(d*x + c))

________________________________________________________________________________________

giac [A]  time = 0.20, size = 45, normalized size = 0.98 \[ \frac {\frac {\log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right )}{a} - \frac {\log \left ({\left | \sin \left (d x + c\right ) \right |}\right )}{a} - \frac {1}{a \sin \left (d x + c\right )}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*csc(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

(log(abs(sin(d*x + c) + 1))/a - log(abs(sin(d*x + c)))/a - 1/(a*sin(d*x + c)))/d

________________________________________________________________________________________

maple [A]  time = 0.18, size = 49, normalized size = 1.07 \[ -\frac {1}{d a \sin \left (d x +c \right )}-\frac {\ln \left (\sin \left (d x +c \right )\right )}{a d}+\frac {\ln \left (1+\sin \left (d x +c \right )\right )}{a d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*csc(d*x+c)^2/(a+a*sin(d*x+c)),x)

[Out]

-1/d/a/sin(d*x+c)-ln(sin(d*x+c))/a/d+ln(1+sin(d*x+c))/a/d

________________________________________________________________________________________

maxima [A]  time = 0.31, size = 43, normalized size = 0.93 \[ \frac {\frac {\log \left (\sin \left (d x + c\right ) + 1\right )}{a} - \frac {\log \left (\sin \left (d x + c\right )\right )}{a} - \frac {1}{a \sin \left (d x + c\right )}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*csc(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

(log(sin(d*x + c) + 1)/a - log(sin(d*x + c))/a - 1/(a*sin(d*x + c)))/d

________________________________________________________________________________________

mupad [B]  time = 8.60, size = 55, normalized size = 1.20 \[ -\frac {2\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )-4\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )+\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+\frac {1}{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}}{2\,a\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)/(sin(c + d*x)^2*(a + a*sin(c + d*x))),x)

[Out]

-(2*log(tan(c/2 + (d*x)/2)) - 4*log(tan(c/2 + (d*x)/2) + 1) + tan(c/2 + (d*x)/2) + 1/tan(c/2 + (d*x)/2))/(2*a*
d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {\cos {\left (c + d x \right )} \csc ^{2}{\left (c + d x \right )}}{\sin {\left (c + d x \right )} + 1}\, dx}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*csc(d*x+c)**2/(a+a*sin(d*x+c)),x)

[Out]

Integral(cos(c + d*x)*csc(c + d*x)**2/(sin(c + d*x) + 1), x)/a

________________________________________________________________________________________