3.234 \(\int \frac {\cos (c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx\)

Optimal. Leaf size=52 \[ \frac {\sin (c+d x)}{a^2 d}-\frac {1}{d \left (a^2 \sin (c+d x)+a^2\right )}-\frac {2 \log (\sin (c+d x)+1)}{a^2 d} \]

[Out]

-2*ln(1+sin(d*x+c))/a^2/d+sin(d*x+c)/a^2/d-1/d/(a^2+a^2*sin(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 52, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {2833, 12, 43} \[ \frac {\sin (c+d x)}{a^2 d}-\frac {1}{d \left (a^2 \sin (c+d x)+a^2\right )}-\frac {2 \log (\sin (c+d x)+1)}{a^2 d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*Sin[c + d*x]^2)/(a + a*Sin[c + d*x])^2,x]

[Out]

(-2*Log[1 + Sin[c + d*x]])/(a^2*d) + Sin[c + d*x]/(a^2*d) - 1/(d*(a^2 + a^2*Sin[c + d*x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2833

Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_.), x_Symbol] :> Dist[1/(b*f), Subst[Int[(a + x)^m*(c + (d*x)/b)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[
{a, b, c, d, e, f, m, n}, x]

Rubi steps

\begin {align*} \int \frac {\cos (c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x^2}{a^2 (a+x)^2} \, dx,x,a \sin (c+d x)\right )}{a d}\\ &=\frac {\operatorname {Subst}\left (\int \frac {x^2}{(a+x)^2} \, dx,x,a \sin (c+d x)\right )}{a^3 d}\\ &=\frac {\operatorname {Subst}\left (\int \left (1+\frac {a^2}{(a+x)^2}-\frac {2 a}{a+x}\right ) \, dx,x,a \sin (c+d x)\right )}{a^3 d}\\ &=-\frac {2 \log (1+\sin (c+d x))}{a^2 d}+\frac {\sin (c+d x)}{a^2 d}-\frac {1}{d \left (a^2+a^2 \sin (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.20, size = 55, normalized size = 1.06 \[ \frac {4 \sin (c+d x)-8 \log (\sin (c+d x)+1)-\frac {4}{\left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )^2}}{4 a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*Sin[c + d*x]^2)/(a + a*Sin[c + d*x])^2,x]

[Out]

(-8*Log[1 + Sin[c + d*x]] - 4/(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2 + 4*Sin[c + d*x])/(4*a^2*d)

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 57, normalized size = 1.10 \[ -\frac {\cos \left (d x + c\right )^{2} + 2 \, {\left (\sin \left (d x + c\right ) + 1\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - \sin \left (d x + c\right )}{a^{2} d \sin \left (d x + c\right ) + a^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*sin(d*x+c)^2/(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

-(cos(d*x + c)^2 + 2*(sin(d*x + c) + 1)*log(sin(d*x + c) + 1) - sin(d*x + c))/(a^2*d*sin(d*x + c) + a^2*d)

________________________________________________________________________________________

giac [A]  time = 0.17, size = 70, normalized size = 1.35 \[ \frac {\frac {2 \, \log \left (\frac {{\left | a \sin \left (d x + c\right ) + a \right |}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{2} {\left | a \right |}}\right )}{a^{2}} + \frac {a \sin \left (d x + c\right ) + a}{a^{3}} - \frac {1}{{\left (a \sin \left (d x + c\right ) + a\right )} a}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*sin(d*x+c)^2/(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

(2*log(abs(a*sin(d*x + c) + a)/((a*sin(d*x + c) + a)^2*abs(a)))/a^2 + (a*sin(d*x + c) + a)/a^3 - 1/((a*sin(d*x
 + c) + a)*a))/d

________________________________________________________________________________________

maple [A]  time = 0.23, size = 50, normalized size = 0.96 \[ \frac {\sin \left (d x +c \right )}{a^{2} d}-\frac {2 \ln \left (1+\sin \left (d x +c \right )\right )}{a^{2} d}-\frac {1}{d \,a^{2} \left (1+\sin \left (d x +c \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*sin(d*x+c)^2/(a+a*sin(d*x+c))^2,x)

[Out]

sin(d*x+c)/a^2/d-2*ln(1+sin(d*x+c))/a^2/d-1/d/a^2/(1+sin(d*x+c))

________________________________________________________________________________________

maxima [A]  time = 0.38, size = 47, normalized size = 0.90 \[ -\frac {\frac {1}{a^{2} \sin \left (d x + c\right ) + a^{2}} + \frac {2 \, \log \left (\sin \left (d x + c\right ) + 1\right )}{a^{2}} - \frac {\sin \left (d x + c\right )}{a^{2}}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*sin(d*x+c)^2/(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

-(1/(a^2*sin(d*x + c) + a^2) + 2*log(sin(d*x + c) + 1)/a^2 - sin(d*x + c)/a^2)/d

________________________________________________________________________________________

mupad [B]  time = 0.08, size = 45, normalized size = 0.87 \[ \frac {{\sin \left (c+d\,x\right )}^2-2}{a^2\,d\,\left (\sin \left (c+d\,x\right )+1\right )}-\frac {2\,\ln \left (\sin \left (c+d\,x\right )+1\right )}{a^2\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)*sin(c + d*x)^2)/(a + a*sin(c + d*x))^2,x)

[Out]

(sin(c + d*x)^2 - 2)/(a^2*d*(sin(c + d*x) + 1)) - (2*log(sin(c + d*x) + 1))/(a^2*d)

________________________________________________________________________________________

sympy [A]  time = 1.45, size = 126, normalized size = 2.42 \[ \begin {cases} - \frac {2 \log {\left (\sin {\left (c + d x \right )} + 1 \right )} \sin {\left (c + d x \right )}}{a^{2} d \sin {\left (c + d x \right )} + a^{2} d} - \frac {2 \log {\left (\sin {\left (c + d x \right )} + 1 \right )}}{a^{2} d \sin {\left (c + d x \right )} + a^{2} d} + \frac {\sin ^{2}{\left (c + d x \right )}}{a^{2} d \sin {\left (c + d x \right )} + a^{2} d} - \frac {2}{a^{2} d \sin {\left (c + d x \right )} + a^{2} d} & \text {for}\: d \neq 0 \\\frac {x \sin ^{2}{\relax (c )} \cos {\relax (c )}}{\left (a \sin {\relax (c )} + a\right )^{2}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*sin(d*x+c)**2/(a+a*sin(d*x+c))**2,x)

[Out]

Piecewise((-2*log(sin(c + d*x) + 1)*sin(c + d*x)/(a**2*d*sin(c + d*x) + a**2*d) - 2*log(sin(c + d*x) + 1)/(a**
2*d*sin(c + d*x) + a**2*d) + sin(c + d*x)**2/(a**2*d*sin(c + d*x) + a**2*d) - 2/(a**2*d*sin(c + d*x) + a**2*d)
, Ne(d, 0)), (x*sin(c)**2*cos(c)/(a*sin(c) + a)**2, True))

________________________________________________________________________________________