3.276 \(\int \cos ^2(c+d x) \sin ^2(c+d x) (a+a \sin (c+d x))^2 \, dx\)

Optimal. Leaf size=103 \[ -\frac {a^2 \cos ^5(c+d x)}{10 d}+\frac {a^2 \sin (c+d x) \cos ^3(c+d x)}{8 d}+\frac {3 a^2 \sin (c+d x) \cos (c+d x)}{16 d}+\frac {3 a^2 x}{16}-\frac {\cos ^3(c+d x) (a \sin (c+d x)+a)^3}{6 a d} \]

[Out]

3/16*a^2*x-1/10*a^2*cos(d*x+c)^5/d+3/16*a^2*cos(d*x+c)*sin(d*x+c)/d+1/8*a^2*cos(d*x+c)^3*sin(d*x+c)/d-1/6*cos(
d*x+c)^3*(a+a*sin(d*x+c))^3/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 103, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {2870, 2669, 2635, 8} \[ -\frac {a^2 \cos ^5(c+d x)}{10 d}+\frac {a^2 \sin (c+d x) \cos ^3(c+d x)}{8 d}+\frac {3 a^2 \sin (c+d x) \cos (c+d x)}{16 d}+\frac {3 a^2 x}{16}-\frac {\cos ^3(c+d x) (a \sin (c+d x)+a)^3}{6 a d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2*Sin[c + d*x]^2*(a + a*Sin[c + d*x])^2,x]

[Out]

(3*a^2*x)/16 - (a^2*Cos[c + d*x]^5)/(10*d) + (3*a^2*Cos[c + d*x]*Sin[c + d*x])/(16*d) + (a^2*Cos[c + d*x]^3*Si
n[c + d*x])/(8*d) - (Cos[c + d*x]^3*(a + a*Sin[c + d*x])^3)/(6*a*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2669

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(b*(g*Cos[
e + f*x])^(p + 1))/(f*g*(p + 1)), x] + Dist[a, Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x]
&& (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])

Rule 2870

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*sin[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> -Simp[((g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1))/(2*b*f*g*(m + 1)), x] + Dist[a/(2
*g^2), Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&
 EqQ[a^2 - b^2, 0] && EqQ[m - p, 0]

Rubi steps

\begin {align*} \int \cos ^2(c+d x) \sin ^2(c+d x) (a+a \sin (c+d x))^2 \, dx &=-\frac {\cos ^3(c+d x) (a+a \sin (c+d x))^3}{6 a d}+\frac {1}{2} a \int \cos ^4(c+d x) (a+a \sin (c+d x)) \, dx\\ &=-\frac {a^2 \cos ^5(c+d x)}{10 d}-\frac {\cos ^3(c+d x) (a+a \sin (c+d x))^3}{6 a d}+\frac {1}{2} a^2 \int \cos ^4(c+d x) \, dx\\ &=-\frac {a^2 \cos ^5(c+d x)}{10 d}+\frac {a^2 \cos ^3(c+d x) \sin (c+d x)}{8 d}-\frac {\cos ^3(c+d x) (a+a \sin (c+d x))^3}{6 a d}+\frac {1}{8} \left (3 a^2\right ) \int \cos ^2(c+d x) \, dx\\ &=-\frac {a^2 \cos ^5(c+d x)}{10 d}+\frac {3 a^2 \cos (c+d x) \sin (c+d x)}{16 d}+\frac {a^2 \cos ^3(c+d x) \sin (c+d x)}{8 d}-\frac {\cos ^3(c+d x) (a+a \sin (c+d x))^3}{6 a d}+\frac {1}{16} \left (3 a^2\right ) \int 1 \, dx\\ &=\frac {3 a^2 x}{16}-\frac {a^2 \cos ^5(c+d x)}{10 d}+\frac {3 a^2 \cos (c+d x) \sin (c+d x)}{16 d}+\frac {a^2 \cos ^3(c+d x) \sin (c+d x)}{8 d}-\frac {\cos ^3(c+d x) (a+a \sin (c+d x))^3}{6 a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.45, size = 76, normalized size = 0.74 \[ \frac {a^2 (-15 \sin (2 (c+d x))-45 \sin (4 (c+d x))+5 \sin (6 (c+d x))-240 \cos (c+d x)-40 \cos (3 (c+d x))+24 \cos (5 (c+d x))+180 c+180 d x)}{960 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2*Sin[c + d*x]^2*(a + a*Sin[c + d*x])^2,x]

[Out]

(a^2*(180*c + 180*d*x - 240*Cos[c + d*x] - 40*Cos[3*(c + d*x)] + 24*Cos[5*(c + d*x)] - 15*Sin[2*(c + d*x)] - 4
5*Sin[4*(c + d*x)] + 5*Sin[6*(c + d*x)]))/(960*d)

________________________________________________________________________________________

fricas [A]  time = 0.51, size = 85, normalized size = 0.83 \[ \frac {96 \, a^{2} \cos \left (d x + c\right )^{5} - 160 \, a^{2} \cos \left (d x + c\right )^{3} + 45 \, a^{2} d x + 5 \, {\left (8 \, a^{2} \cos \left (d x + c\right )^{5} - 26 \, a^{2} \cos \left (d x + c\right )^{3} + 9 \, a^{2} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{240 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)^2*(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

1/240*(96*a^2*cos(d*x + c)^5 - 160*a^2*cos(d*x + c)^3 + 45*a^2*d*x + 5*(8*a^2*cos(d*x + c)^5 - 26*a^2*cos(d*x
+ c)^3 + 9*a^2*cos(d*x + c))*sin(d*x + c))/d

________________________________________________________________________________________

giac [A]  time = 0.19, size = 106, normalized size = 1.03 \[ \frac {3}{16} \, a^{2} x + \frac {a^{2} \cos \left (5 \, d x + 5 \, c\right )}{40 \, d} - \frac {a^{2} \cos \left (3 \, d x + 3 \, c\right )}{24 \, d} - \frac {a^{2} \cos \left (d x + c\right )}{4 \, d} + \frac {a^{2} \sin \left (6 \, d x + 6 \, c\right )}{192 \, d} - \frac {3 \, a^{2} \sin \left (4 \, d x + 4 \, c\right )}{64 \, d} - \frac {a^{2} \sin \left (2 \, d x + 2 \, c\right )}{64 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)^2*(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

3/16*a^2*x + 1/40*a^2*cos(5*d*x + 5*c)/d - 1/24*a^2*cos(3*d*x + 3*c)/d - 1/4*a^2*cos(d*x + c)/d + 1/192*a^2*si
n(6*d*x + 6*c)/d - 3/64*a^2*sin(4*d*x + 4*c)/d - 1/64*a^2*sin(2*d*x + 2*c)/d

________________________________________________________________________________________

maple [A]  time = 0.17, size = 142, normalized size = 1.38 \[ \frac {a^{2} \left (-\frac {\left (\sin ^{3}\left (d x +c \right )\right ) \left (\cos ^{3}\left (d x +c \right )\right )}{6}-\frac {\left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{8}+\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{16}+\frac {d x}{16}+\frac {c}{16}\right )+2 a^{2} \left (-\frac {\left (\sin ^{2}\left (d x +c \right )\right ) \left (\cos ^{3}\left (d x +c \right )\right )}{5}-\frac {2 \left (\cos ^{3}\left (d x +c \right )\right )}{15}\right )+a^{2} \left (-\frac {\left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{4}+\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{8}+\frac {d x}{8}+\frac {c}{8}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*sin(d*x+c)^2*(a+a*sin(d*x+c))^2,x)

[Out]

1/d*(a^2*(-1/6*sin(d*x+c)^3*cos(d*x+c)^3-1/8*cos(d*x+c)^3*sin(d*x+c)+1/16*cos(d*x+c)*sin(d*x+c)+1/16*d*x+1/16*
c)+2*a^2*(-1/5*sin(d*x+c)^2*cos(d*x+c)^3-2/15*cos(d*x+c)^3)+a^2*(-1/4*cos(d*x+c)^3*sin(d*x+c)+1/8*cos(d*x+c)*s
in(d*x+c)+1/8*d*x+1/8*c))

________________________________________________________________________________________

maxima [A]  time = 0.33, size = 93, normalized size = 0.90 \[ \frac {128 \, {\left (3 \, \cos \left (d x + c\right )^{5} - 5 \, \cos \left (d x + c\right )^{3}\right )} a^{2} - 5 \, {\left (4 \, \sin \left (2 \, d x + 2 \, c\right )^{3} - 12 \, d x - 12 \, c + 3 \, \sin \left (4 \, d x + 4 \, c\right )\right )} a^{2} + 30 \, {\left (4 \, d x + 4 \, c - \sin \left (4 \, d x + 4 \, c\right )\right )} a^{2}}{960 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)^2*(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

1/960*(128*(3*cos(d*x + c)^5 - 5*cos(d*x + c)^3)*a^2 - 5*(4*sin(2*d*x + 2*c)^3 - 12*d*x - 12*c + 3*sin(4*d*x +
 4*c))*a^2 + 30*(4*d*x + 4*c - sin(4*d*x + 4*c))*a^2)/d

________________________________________________________________________________________

mupad [B]  time = 12.16, size = 257, normalized size = 2.50 \[ \frac {3\,a^2\,x}{16}-\frac {\frac {3\,a^2\,\left (c+d\,x\right )}{16}-\frac {13\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{24}-\frac {25\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{4}+\frac {25\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{4}+\frac {13\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9}{24}-\frac {3\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}}{8}-\frac {a^2\,\left (45\,c+45\,d\,x-128\right )}{240}+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (\frac {9\,a^2\,\left (c+d\,x\right )}{8}-\frac {a^2\,\left (270\,c+270\,d\,x-768\right )}{240}\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,\left (\frac {15\,a^2\,\left (c+d\,x\right )}{4}-\frac {a^2\,\left (900\,c+900\,d\,x-1280\right )}{240}\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8\,\left (\frac {45\,a^2\,\left (c+d\,x\right )}{16}-\frac {a^2\,\left (675\,c+675\,d\,x-1920\right )}{240}\right )+\frac {3\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8}}{d\,{\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}^6} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^2*sin(c + d*x)^2*(a + a*sin(c + d*x))^2,x)

[Out]

(3*a^2*x)/16 - ((3*a^2*(c + d*x))/16 - (13*a^2*tan(c/2 + (d*x)/2)^3)/24 - (25*a^2*tan(c/2 + (d*x)/2)^5)/4 + (2
5*a^2*tan(c/2 + (d*x)/2)^7)/4 + (13*a^2*tan(c/2 + (d*x)/2)^9)/24 - (3*a^2*tan(c/2 + (d*x)/2)^11)/8 - (a^2*(45*
c + 45*d*x - 128))/240 + tan(c/2 + (d*x)/2)^2*((9*a^2*(c + d*x))/8 - (a^2*(270*c + 270*d*x - 768))/240) + tan(
c/2 + (d*x)/2)^6*((15*a^2*(c + d*x))/4 - (a^2*(900*c + 900*d*x - 1280))/240) + tan(c/2 + (d*x)/2)^8*((45*a^2*(
c + d*x))/16 - (a^2*(675*c + 675*d*x - 1920))/240) + (3*a^2*tan(c/2 + (d*x)/2))/8)/(d*(tan(c/2 + (d*x)/2)^2 +
1)^6)

________________________________________________________________________________________

sympy [A]  time = 4.79, size = 309, normalized size = 3.00 \[ \begin {cases} \frac {a^{2} x \sin ^{6}{\left (c + d x \right )}}{16} + \frac {3 a^{2} x \sin ^{4}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{16} + \frac {a^{2} x \sin ^{4}{\left (c + d x \right )}}{8} + \frac {3 a^{2} x \sin ^{2}{\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{16} + \frac {a^{2} x \sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{4} + \frac {a^{2} x \cos ^{6}{\left (c + d x \right )}}{16} + \frac {a^{2} x \cos ^{4}{\left (c + d x \right )}}{8} + \frac {a^{2} \sin ^{5}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{16 d} - \frac {a^{2} \sin ^{3}{\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{6 d} + \frac {a^{2} \sin ^{3}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{8 d} - \frac {2 a^{2} \sin ^{2}{\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{3 d} - \frac {a^{2} \sin {\left (c + d x \right )} \cos ^{5}{\left (c + d x \right )}}{16 d} - \frac {a^{2} \sin {\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{8 d} - \frac {4 a^{2} \cos ^{5}{\left (c + d x \right )}}{15 d} & \text {for}\: d \neq 0 \\x \left (a \sin {\relax (c )} + a\right )^{2} \sin ^{2}{\relax (c )} \cos ^{2}{\relax (c )} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*sin(d*x+c)**2*(a+a*sin(d*x+c))**2,x)

[Out]

Piecewise((a**2*x*sin(c + d*x)**6/16 + 3*a**2*x*sin(c + d*x)**4*cos(c + d*x)**2/16 + a**2*x*sin(c + d*x)**4/8
+ 3*a**2*x*sin(c + d*x)**2*cos(c + d*x)**4/16 + a**2*x*sin(c + d*x)**2*cos(c + d*x)**2/4 + a**2*x*cos(c + d*x)
**6/16 + a**2*x*cos(c + d*x)**4/8 + a**2*sin(c + d*x)**5*cos(c + d*x)/(16*d) - a**2*sin(c + d*x)**3*cos(c + d*
x)**3/(6*d) + a**2*sin(c + d*x)**3*cos(c + d*x)/(8*d) - 2*a**2*sin(c + d*x)**2*cos(c + d*x)**3/(3*d) - a**2*si
n(c + d*x)*cos(c + d*x)**5/(16*d) - a**2*sin(c + d*x)*cos(c + d*x)**3/(8*d) - 4*a**2*cos(c + d*x)**5/(15*d), N
e(d, 0)), (x*(a*sin(c) + a)**2*sin(c)**2*cos(c)**2, True))

________________________________________________________________________________________