3.302 \(\int \frac {\cot ^2(c+d x)}{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=29 \[ \frac {\tanh ^{-1}(\cos (c+d x))}{a d}-\frac {\cot (c+d x)}{a d} \]

[Out]

arctanh(cos(d*x+c))/a/d-cot(d*x+c)/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 29, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {2706, 3767, 8, 3770} \[ \frac {\tanh ^{-1}(\cos (c+d x))}{a d}-\frac {\cot (c+d x)}{a d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^2/(a + a*Sin[c + d*x]),x]

[Out]

ArcTanh[Cos[c + d*x]]/(a*d) - Cot[c + d*x]/(a*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2706

Int[((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_.)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/a, Int[S
ec[e + f*x]^2*(g*Tan[e + f*x])^p, x], x] - Dist[1/(b*g), Int[Sec[e + f*x]*(g*Tan[e + f*x])^(p + 1), x], x] /;
FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] && NeQ[p, -1]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {\cot ^2(c+d x)}{a+a \sin (c+d x)} \, dx &=-\frac {\int \csc (c+d x) \, dx}{a}+\frac {\int \csc ^2(c+d x) \, dx}{a}\\ &=\frac {\tanh ^{-1}(\cos (c+d x))}{a d}-\frac {\operatorname {Subst}(\int 1 \, dx,x,\cot (c+d x))}{a d}\\ &=\frac {\tanh ^{-1}(\cos (c+d x))}{a d}-\frac {\cot (c+d x)}{a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.24, size = 69, normalized size = 2.38 \[ -\frac {\csc \left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {1}{2} (c+d x)\right ) \left (\cos (c+d x)+\sin (c+d x) \left (\log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )\right )\right )}{2 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^2/(a + a*Sin[c + d*x]),x]

[Out]

-1/2*(Csc[(c + d*x)/2]*Sec[(c + d*x)/2]*(Cos[c + d*x] + (-Log[Cos[(c + d*x)/2]] + Log[Sin[(c + d*x)/2]])*Sin[c
 + d*x]))/(a*d)

________________________________________________________________________________________

fricas [B]  time = 0.49, size = 62, normalized size = 2.14 \[ \frac {\log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) - \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right )}{2 \, a d \sin \left (d x + c\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/2*(log(1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - 2*cos(d*x + c))/(a
*d*sin(d*x + c))

________________________________________________________________________________________

giac [B]  time = 0.16, size = 65, normalized size = 2.24 \[ -\frac {\frac {2 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a} - \frac {\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a} - \frac {2 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1}{a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/2*(2*log(abs(tan(1/2*d*x + 1/2*c)))/a - tan(1/2*d*x + 1/2*c)/a - (2*tan(1/2*d*x + 1/2*c) - 1)/(a*tan(1/2*d*
x + 1/2*c)))/d

________________________________________________________________________________________

maple [A]  time = 0.38, size = 56, normalized size = 1.93 \[ \frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a d}-\frac {1}{2 a d \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*csc(d*x+c)^2/(a+a*sin(d*x+c)),x)

[Out]

1/2/a/d*tan(1/2*d*x+1/2*c)-1/2/a/d/tan(1/2*d*x+1/2*c)-1/a/d*ln(tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

maxima [B]  time = 0.33, size = 70, normalized size = 2.41 \[ -\frac {\frac {2 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} + \frac {\cos \left (d x + c\right ) + 1}{a \sin \left (d x + c\right )} - \frac {\sin \left (d x + c\right )}{a {\left (\cos \left (d x + c\right ) + 1\right )}}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/2*(2*log(sin(d*x + c)/(cos(d*x + c) + 1))/a + (cos(d*x + c) + 1)/(a*sin(d*x + c)) - sin(d*x + c)/(a*(cos(d*
x + c) + 1)))/d

________________________________________________________________________________________

mupad [B]  time = 8.60, size = 25, normalized size = 0.86 \[ -\frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )+\mathrm {cot}\left (c+d\,x\right )}{a\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^2/(sin(c + d*x)^2*(a + a*sin(c + d*x))),x)

[Out]

-(log(tan(c/2 + (d*x)/2)) + cot(c + d*x))/(a*d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {\cos ^{2}{\left (c + d x \right )} \csc ^{2}{\left (c + d x \right )}}{\sin {\left (c + d x \right )} + 1}\, dx}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*csc(d*x+c)**2/(a+a*sin(d*x+c)),x)

[Out]

Integral(cos(c + d*x)**2*csc(c + d*x)**2/(sin(c + d*x) + 1), x)/a

________________________________________________________________________________________