3.338 \(\int \frac {\cos ^2(c+d x) \sin (c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx\)

Optimal. Leaf size=60 \[ \frac {2 a \cos ^3(c+d x)}{15 d (a \sin (c+d x)+a)^{3/2}}-\frac {2 \cos ^3(c+d x)}{5 d \sqrt {a \sin (c+d x)+a}} \]

[Out]

2/15*a*cos(d*x+c)^3/d/(a+a*sin(d*x+c))^(3/2)-2/5*cos(d*x+c)^3/d/(a+a*sin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 60, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {2856, 2673} \[ \frac {2 a \cos ^3(c+d x)}{15 d (a \sin (c+d x)+a)^{3/2}}-\frac {2 \cos ^3(c+d x)}{5 d \sqrt {a \sin (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^2*Sin[c + d*x])/Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(2*a*Cos[c + d*x]^3)/(15*d*(a + a*Sin[c + d*x])^(3/2)) - (2*Cos[c + d*x]^3)/(5*d*Sqrt[a + a*Sin[c + d*x]])

Rule 2673

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(b*(g*
Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1))/(f*g*(m - 1)), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && Eq
Q[a^2 - b^2, 0] && EqQ[2*m + p - 1, 0] && NeQ[m, 1]

Rule 2856

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> -Simp[(d*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m)/(f*g*(m + p + 1)), x]
+ Dist[(a*d*m + b*c*(m + p + 1))/(b*(m + p + 1)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^m, x], x] /; Fre
eQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[Simplify[(2*m + p + 1)/2], 0] && NeQ[m + p + 1
, 0]

Rubi steps

\begin {align*} \int \frac {\cos ^2(c+d x) \sin (c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx &=-\frac {2 \cos ^3(c+d x)}{5 d \sqrt {a+a \sin (c+d x)}}-\frac {1}{5} \int \frac {\cos ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx\\ &=\frac {2 a \cos ^3(c+d x)}{15 d (a+a \sin (c+d x))^{3/2}}-\frac {2 \cos ^3(c+d x)}{5 d \sqrt {a+a \sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.43, size = 77, normalized size = 1.28 \[ -\frac {2 (3 \sin (c+d x)+2) \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^3 \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )}{15 d \sqrt {a (\sin (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^2*Sin[c + d*x])/Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(-2*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^3*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])*(2 + 3*Sin[c + d*x]))/(15*d*
Sqrt[a*(1 + Sin[c + d*x])])

________________________________________________________________________________________

fricas [A]  time = 0.50, size = 96, normalized size = 1.60 \[ -\frac {2 \, {\left (3 \, \cos \left (d x + c\right )^{3} + 4 \, \cos \left (d x + c\right )^{2} - {\left (3 \, \cos \left (d x + c\right )^{2} - \cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{15 \, {\left (a d \cos \left (d x + c\right ) + a d \sin \left (d x + c\right ) + a d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)/(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-2/15*(3*cos(d*x + c)^3 + 4*cos(d*x + c)^2 - (3*cos(d*x + c)^2 - cos(d*x + c) - 2)*sin(d*x + c) - cos(d*x + c)
 - 2)*sqrt(a*sin(d*x + c) + a)/(a*d*cos(d*x + c) + a*d*sin(d*x + c) + a*d)

________________________________________________________________________________________

giac [B]  time = 0.52, size = 155, normalized size = 2.58 \[ -\frac {4 \, {\left (\frac {\sqrt {2} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{\sqrt {a}} - \frac {{\left ({\left (\frac {a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{\mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )} - \frac {5 \, a^{2}}{\mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \frac {5 \, a^{2}}{\mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \frac {a^{2}}{\mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {5}{2}}}\right )}}{15 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)/(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-4/15*(sqrt(2)*sgn(tan(1/2*d*x + 1/2*c) + 1)/sqrt(a) - (((a^2*tan(1/2*d*x + 1/2*c)^2/sgn(tan(1/2*d*x + 1/2*c)
+ 1) - 5*a^2/sgn(tan(1/2*d*x + 1/2*c) + 1))*tan(1/2*d*x + 1/2*c) + 5*a^2/sgn(tan(1/2*d*x + 1/2*c) + 1))*tan(1/
2*d*x + 1/2*c)^2 - a^2/sgn(tan(1/2*d*x + 1/2*c) + 1))/(a*tan(1/2*d*x + 1/2*c)^2 + a)^(5/2))/d

________________________________________________________________________________________

maple [A]  time = 0.89, size = 54, normalized size = 0.90 \[ -\frac {2 \left (1+\sin \left (d x +c \right )\right ) \left (\sin \left (d x +c \right )-1\right )^{2} \left (3 \sin \left (d x +c \right )+2\right )}{15 \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*sin(d*x+c)/(a+a*sin(d*x+c))^(1/2),x)

[Out]

-2/15*(1+sin(d*x+c))*(sin(d*x+c)-1)^2*(3*sin(d*x+c)+2)/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{2} \sin \left (d x + c\right )}{\sqrt {a \sin \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)/(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^2*sin(d*x + c)/sqrt(a*sin(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )}{\sqrt {a+a\,\sin \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^2*sin(c + d*x))/(a + a*sin(c + d*x))^(1/2),x)

[Out]

int((cos(c + d*x)^2*sin(c + d*x))/(a + a*sin(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\sin {\left (c + d x \right )} + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*sin(d*x+c)/(a+a*sin(d*x+c))**(1/2),x)

[Out]

Integral(sin(c + d*x)*cos(c + d*x)**2/sqrt(a*(sin(c + d*x) + 1)), x)

________________________________________________________________________________________