3.53 \(\int \frac {\cos ^2(e+f x) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=96 \[ \frac {\cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f \sqrt {a \sin (e+f x)+a}}+\frac {2 c \cos (e+f x) \log (\sin (e+f x)+1)}{a f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}} \]

[Out]

2*c*cos(f*x+e)*ln(1+sin(f*x+e))/a/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)+cos(f*x+e)*(c-c*sin(f*x+e))^
(1/2)/a/f/(a+a*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.41, antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.132, Rules used = {2841, 2740, 2737, 2667, 31} \[ \frac {\cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f \sqrt {a \sin (e+f x)+a}}+\frac {2 c \cos (e+f x) \log (\sin (e+f x)+1)}{a f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[e + f*x]^2*Sqrt[c - c*Sin[e + f*x]])/(a + a*Sin[e + f*x])^(3/2),x]

[Out]

(2*c*Cos[e + f*x]*Log[1 + Sin[e + f*x]])/(a*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) + (Cos[e + f*
x]*Sqrt[c - c*Sin[e + f*x]])/(a*f*Sqrt[a + a*Sin[e + f*x]])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 2667

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 2737

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(
a*c*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2740

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Sim
p[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n)/(f*(m + n)), x] + Dist[(a*(2*m - 1))/(m
 + n), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && E
qQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m])
 &&  !(ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])

Rule 2841

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rubi steps

\begin {align*} \int \frac {\cos ^2(e+f x) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx &=\frac {\int \frac {(c-c \sin (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)}} \, dx}{a c}\\ &=\frac {\cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f \sqrt {a+a \sin (e+f x)}}+\frac {2 \int \frac {\sqrt {c-c \sin (e+f x)}}{\sqrt {a+a \sin (e+f x)}} \, dx}{a}\\ &=\frac {\cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f \sqrt {a+a \sin (e+f x)}}+\frac {(2 c \cos (e+f x)) \int \frac {\cos (e+f x)}{a+a \sin (e+f x)} \, dx}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=\frac {\cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f \sqrt {a+a \sin (e+f x)}}+\frac {(2 c \cos (e+f x)) \operatorname {Subst}\left (\int \frac {1}{a+x} \, dx,x,a \sin (e+f x)\right )}{a f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=\frac {2 c \cos (e+f x) \log (1+\sin (e+f x))}{a f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {\cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f \sqrt {a+a \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.06, size = 113, normalized size = 1.18 \[ -\frac {\sqrt {c-c \sin (e+f x)} \left (-4 \log \left (e^{i (e+f x)}+i\right )+\sin (e+f x)+2 i f x\right ) \left (\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )\right )^3}{f (a (\sin (e+f x)+1))^{3/2} \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[e + f*x]^2*Sqrt[c - c*Sin[e + f*x]])/(a + a*Sin[e + f*x])^(3/2),x]

[Out]

-(((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3*((2*I)*f*x - 4*Log[I + E^(I*(e + f*x))] + Sin[e + f*x])*Sqrt[c - c*
Sin[e + f*x]])/(f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(a*(1 + Sin[e + f*x]))^(3/2)))

________________________________________________________________________________________

fricas [F]  time = 0.68, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \cos \left (f x + e\right )^{2}}{a^{2} \cos \left (f x + e\right )^{2} - 2 \, a^{2} \sin \left (f x + e\right ) - 2 \, a^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral(-sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*cos(f*x + e)^2/(a^2*cos(f*x + e)^2 - 2*a^2*sin(f*
x + e) - 2*a^2), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: NotImplementedError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: Unable to check sign: (8*pi/x/2)>(-8*pi/
x/2)Unable to check sign: (8*pi/x/2)>(-8*pi/x/2)Unable to check sign: (8*pi/x/2)>(-8*pi/x/2)Unable to check si
gn: (4*pi/x/2)>(-4*pi/x/2)4*sqrt(2*c)*(1/2*(-tan(1/2*(1/2*f*x+1/4*(2*exp(1)-pi)))^2-6-1/tan(1/2*(1/2*f*x+1/4*(
2*exp(1)-pi)))^2)/(tan(1/2*(1/2*f*x+1/4*(2*exp(1)-pi)))^2+2+1/tan(1/2*(1/2*f*x+1/4*(2*exp(1)-pi)))^2)/sign(-ta
n(1/2*(1/2*f*x+1/4*(2*exp(1)-pi)))^2+1)+1/2*ln(tan(1/2*(1/2*f*x+1/4*(2*exp(1)-pi)))^2+2+1/tan(1/2*(1/2*f*x+1/4
*(2*exp(1)-pi)))^2)/sign(-tan(1/2*(1/2*f*x+1/4*(2*exp(1)-pi)))^2+1)-1/2*ln(tan(1/2*(1/2*f*x+1/4*(2*exp(1)-pi))
)^2-2+1/tan(1/2*(1/2*f*x+1/4*(2*exp(1)-pi)))^2)/sign(-tan(1/2*(1/2*f*x+1/4*(2*exp(1)-pi)))^2+1))*sign(sin(1/2*
(f*x+exp(1))-1/4*pi))/sqrt(2)/sqrt(a)/a/f

________________________________________________________________________________________

maple [A]  time = 0.37, size = 137, normalized size = 1.43 \[ -\frac {\left (4 \ln \left (-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )-2 \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )-\sin \left (f x +e \right )\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, \left (\cos ^{2}\left (f x +e \right )+\sin \left (f x +e \right ) \cos \left (f x +e \right )+\cos \left (f x +e \right )-2 \sin \left (f x +e \right )-2\right )}{f \left (-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )\right ) \left (a \left (1+\sin \left (f x +e \right )\right )\right )^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(3/2),x)

[Out]

-1/f*(4*ln(-(-1+cos(f*x+e)-sin(f*x+e))/sin(f*x+e))-2*ln(2/(cos(f*x+e)+1))-sin(f*x+e))*(-c*(sin(f*x+e)-1))^(1/2
)*(cos(f*x+e)^2+sin(f*x+e)*cos(f*x+e)+cos(f*x+e)-2*sin(f*x+e)-2)/(-1+cos(f*x+e)+sin(f*x+e))/(a*(1+sin(f*x+e)))
^(3/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {-c \sin \left (f x + e\right ) + c} \cos \left (f x + e\right )^{2}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-c*sin(f*x + e) + c)*cos(f*x + e)^2/(a*sin(f*x + e) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\cos \left (e+f\,x\right )}^2\,\sqrt {c-c\,\sin \left (e+f\,x\right )}}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(e + f*x)^2*(c - c*sin(e + f*x))^(1/2))/(a + a*sin(e + f*x))^(3/2),x)

[Out]

int((cos(e + f*x)^2*(c - c*sin(e + f*x))^(1/2))/(a + a*sin(e + f*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {- c \left (\sin {\left (e + f x \right )} - 1\right )} \cos ^{2}{\left (e + f x \right )}}{\left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2*(c-c*sin(f*x+e))**(1/2)/(a+a*sin(f*x+e))**(3/2),x)

[Out]

Integral(sqrt(-c*(sin(e + f*x) - 1))*cos(e + f*x)**2/(a*(sin(e + f*x) + 1))**(3/2), x)

________________________________________________________________________________________