3.539 \(\int \frac {\cos (c+d x) \cot ^4(c+d x)}{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=64 \[ -\frac {\csc ^3(c+d x)}{3 a d}+\frac {\csc ^2(c+d x)}{2 a d}+\frac {\csc (c+d x)}{a d}+\frac {\log (\sin (c+d x))}{a d} \]

[Out]

csc(d*x+c)/a/d+1/2*csc(d*x+c)^2/a/d-1/3*csc(d*x+c)^3/a/d+ln(sin(d*x+c))/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {2836, 12, 75} \[ -\frac {\csc ^3(c+d x)}{3 a d}+\frac {\csc ^2(c+d x)}{2 a d}+\frac {\csc (c+d x)}{a d}+\frac {\log (\sin (c+d x))}{a d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*Cot[c + d*x]^4)/(a + a*Sin[c + d*x]),x]

[Out]

Csc[c + d*x]/(a*d) + Csc[c + d*x]^2/(2*a*d) - Csc[c + d*x]^3/(3*a*d) + Log[Sin[c + d*x]]/(a*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 75

Int[((d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_))*((e_) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*
x)*(d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && IGtQ[p, 0] && EqQ[b*e + a*f, 0] &&  !(ILtQ[n
 + p + 2, 0] && GtQ[n + 2*p, 0])

Rule 2836

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d*x)/b
)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2,
 0]

Rubi steps

\begin {align*} \int \frac {\cos (c+d x) \cot ^4(c+d x)}{a+a \sin (c+d x)} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {a^4 (a-x)^2 (a+x)}{x^4} \, dx,x,a \sin (c+d x)\right )}{a^5 d}\\ &=\frac {\operatorname {Subst}\left (\int \frac {(a-x)^2 (a+x)}{x^4} \, dx,x,a \sin (c+d x)\right )}{a d}\\ &=\frac {\operatorname {Subst}\left (\int \left (\frac {a^3}{x^4}-\frac {a^2}{x^3}-\frac {a}{x^2}+\frac {1}{x}\right ) \, dx,x,a \sin (c+d x)\right )}{a d}\\ &=\frac {\csc (c+d x)}{a d}+\frac {\csc ^2(c+d x)}{2 a d}-\frac {\csc ^3(c+d x)}{3 a d}+\frac {\log (\sin (c+d x))}{a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 48, normalized size = 0.75 \[ \frac {-2 \csc ^3(c+d x)+3 \csc ^2(c+d x)+6 \csc (c+d x)+6 \log (\sin (c+d x))}{6 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*Cot[c + d*x]^4)/(a + a*Sin[c + d*x]),x]

[Out]

(6*Csc[c + d*x] + 3*Csc[c + d*x]^2 - 2*Csc[c + d*x]^3 + 6*Log[Sin[c + d*x]])/(6*a*d)

________________________________________________________________________________________

fricas [A]  time = 0.78, size = 75, normalized size = 1.17 \[ \frac {6 \, {\left (\cos \left (d x + c\right )^{2} - 1\right )} \log \left (\frac {1}{2} \, \sin \left (d x + c\right )\right ) \sin \left (d x + c\right ) + 6 \, \cos \left (d x + c\right )^{2} - 3 \, \sin \left (d x + c\right ) - 4}{6 \, {\left (a d \cos \left (d x + c\right )^{2} - a d\right )} \sin \left (d x + c\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^4/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/6*(6*(cos(d*x + c)^2 - 1)*log(1/2*sin(d*x + c))*sin(d*x + c) + 6*cos(d*x + c)^2 - 3*sin(d*x + c) - 4)/((a*d*
cos(d*x + c)^2 - a*d)*sin(d*x + c))

________________________________________________________________________________________

giac [A]  time = 0.20, size = 62, normalized size = 0.97 \[ \frac {\frac {6 \, \log \left ({\left | \sin \left (d x + c\right ) \right |}\right )}{a} - \frac {11 \, \sin \left (d x + c\right )^{3} - 6 \, \sin \left (d x + c\right )^{2} - 3 \, \sin \left (d x + c\right ) + 2}{a \sin \left (d x + c\right )^{3}}}{6 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^4/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/6*(6*log(abs(sin(d*x + c)))/a - (11*sin(d*x + c)^3 - 6*sin(d*x + c)^2 - 3*sin(d*x + c) + 2)/(a*sin(d*x + c)^
3))/d

________________________________________________________________________________________

maple [A]  time = 0.46, size = 63, normalized size = 0.98 \[ \frac {1}{d a \sin \left (d x +c \right )}+\frac {\ln \left (\sin \left (d x +c \right )\right )}{a d}+\frac {1}{2 a d \sin \left (d x +c \right )^{2}}-\frac {1}{3 a d \sin \left (d x +c \right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^5*csc(d*x+c)^4/(a+a*sin(d*x+c)),x)

[Out]

1/d/a/sin(d*x+c)+ln(sin(d*x+c))/a/d+1/2/a/d/sin(d*x+c)^2-1/3/a/d/sin(d*x+c)^3

________________________________________________________________________________________

maxima [A]  time = 0.77, size = 50, normalized size = 0.78 \[ \frac {\frac {6 \, \log \left (\sin \left (d x + c\right )\right )}{a} + \frac {6 \, \sin \left (d x + c\right )^{2} + 3 \, \sin \left (d x + c\right ) - 2}{a \sin \left (d x + c\right )^{3}}}{6 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^4/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/6*(6*log(sin(d*x + c))/a + (6*sin(d*x + c)^2 + 3*sin(d*x + c) - 2)/(a*sin(d*x + c)^3))/d

________________________________________________________________________________________

mupad [B]  time = 8.95, size = 138, normalized size = 2.16 \[ \frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,a\,d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{24\,a\,d}+\frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a\,d}+\frac {3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8\,a\,d}-\frac {\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}{a\,d}+\frac {{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-\frac {1}{3}\right )}{8\,a\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^5/(sin(c + d*x)^4*(a + a*sin(c + d*x))),x)

[Out]

tan(c/2 + (d*x)/2)^2/(8*a*d) - tan(c/2 + (d*x)/2)^3/(24*a*d) + log(tan(c/2 + (d*x)/2))/(a*d) + (3*tan(c/2 + (d
*x)/2))/(8*a*d) - log(tan(c/2 + (d*x)/2)^2 + 1)/(a*d) + (cot(c/2 + (d*x)/2)^3*(tan(c/2 + (d*x)/2) + 3*tan(c/2
+ (d*x)/2)^2 - 1/3))/(8*a*d)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**5*csc(d*x+c)**4/(a+a*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________