3.71 \(\int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^2} \, dx\)

Optimal. Leaf size=81 \[ \frac {2^{m+\frac {3}{2}} \sec (e+f x) (\sin (e+f x)+1)^{-m-\frac {1}{2}} (a \sin (e+f x)+a)^{m+1} \, _2F_1\left (-\frac {1}{2},-m-\frac {1}{2};\frac {1}{2};\frac {1}{2} (1-\sin (e+f x))\right )}{a c^2 f} \]

[Out]

2^(3/2+m)*hypergeom([-1/2, -1/2-m],[1/2],1/2-1/2*sin(f*x+e))*sec(f*x+e)*(1+sin(f*x+e))^(-1/2-m)*(a+a*sin(f*x+e
))^(1+m)/a/c^2/f

________________________________________________________________________________________

Rubi [A]  time = 0.21, antiderivative size = 81, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {2840, 2689, 70, 69} \[ \frac {2^{m+\frac {3}{2}} \sec (e+f x) (\sin (e+f x)+1)^{-m-\frac {1}{2}} (a \sin (e+f x)+a)^{m+1} \, _2F_1\left (-\frac {1}{2},-m-\frac {1}{2};\frac {1}{2};\frac {1}{2} (1-\sin (e+f x))\right )}{a c^2 f} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[e + f*x]^2*(a + a*Sin[e + f*x])^m)/(c - c*Sin[e + f*x])^2,x]

[Out]

(2^(3/2 + m)*Hypergeometric2F1[-1/2, -1/2 - m, 1/2, (1 - Sin[e + f*x])/2]*Sec[e + f*x]*(1 + Sin[e + f*x])^(-1/
2 - m)*(a + a*Sin[e + f*x])^(1 + m))/(a*c^2*f)

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*((b*(c + d*x))/(b*c - a*d))^FracPart[n]), Int[(a + b*x)^m*Simp[(b*c)/(b*c - a*d) + (b*d*x)/(b*c -
 a*d), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 2689

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[(a^2*
(g*Cos[e + f*x])^(p + 1))/(f*g*(a + b*Sin[e + f*x])^((p + 1)/2)*(a - b*Sin[e + f*x])^((p + 1)/2)), Subst[Int[(
a + b*x)^(m + (p - 1)/2)*(a - b*x)^((p - 1)/2), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&
 EqQ[a^2 - b^2, 0] &&  !IntegerQ[m]

Rule 2840

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(a^m*c^m)/g^(2*m), Int[(g*Cos[e + f*x])^(2*m + p)*(c + d*Sin[e + f*x])
^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && Integer
Q[m] &&  !(IntegerQ[n] && LtQ[n^2, m^2])

Rubi steps

\begin {align*} \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^2} \, dx &=\frac {\int \sec ^2(e+f x) (a+a \sin (e+f x))^{2+m} \, dx}{a^2 c^2}\\ &=\frac {\left (\sec (e+f x) \sqrt {a-a \sin (e+f x)} \sqrt {a+a \sin (e+f x)}\right ) \operatorname {Subst}\left (\int \frac {(a+a x)^{\frac {1}{2}+m}}{(a-a x)^{3/2}} \, dx,x,\sin (e+f x)\right )}{c^2 f}\\ &=\frac {\left (2^{\frac {1}{2}+m} \sec (e+f x) \sqrt {a-a \sin (e+f x)} (a+a \sin (e+f x))^{1+m} \left (\frac {a+a \sin (e+f x)}{a}\right )^{-\frac {1}{2}-m}\right ) \operatorname {Subst}\left (\int \frac {\left (\frac {1}{2}+\frac {x}{2}\right )^{\frac {1}{2}+m}}{(a-a x)^{3/2}} \, dx,x,\sin (e+f x)\right )}{c^2 f}\\ &=\frac {2^{\frac {3}{2}+m} \, _2F_1\left (-\frac {1}{2},-\frac {1}{2}-m;\frac {1}{2};\frac {1}{2} (1-\sin (e+f x))\right ) \sec (e+f x) (1+\sin (e+f x))^{-\frac {1}{2}-m} (a+a \sin (e+f x))^{1+m}}{a c^2 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.21, size = 88, normalized size = 1.09 \[ \frac {2^{m+\frac {3}{2}} \cos (e+f x) (\sin (e+f x)+1)^{-m-\frac {1}{2}} (a (\sin (e+f x)+1))^m \, _2F_1\left (-\frac {1}{2},-m-\frac {1}{2};\frac {1}{2};\frac {1}{2} (1-\sin (e+f x))\right )}{c^2 f (1-\sin (e+f x))} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[e + f*x]^2*(a + a*Sin[e + f*x])^m)/(c - c*Sin[e + f*x])^2,x]

[Out]

(2^(3/2 + m)*Cos[e + f*x]*Hypergeometric2F1[-1/2, -1/2 - m, 1/2, (1 - Sin[e + f*x])/2]*(1 + Sin[e + f*x])^(-1/
2 - m)*(a*(1 + Sin[e + f*x]))^m)/(c^2*f*(1 - Sin[e + f*x]))

________________________________________________________________________________________

fricas [F]  time = 0.47, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{m} \cos \left (f x + e\right )^{2}}{c^{2} \cos \left (f x + e\right )^{2} + 2 \, c^{2} \sin \left (f x + e\right ) - 2 \, c^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^2,x, algorithm="fricas")

[Out]

integral(-(a*sin(f*x + e) + a)^m*cos(f*x + e)^2/(c^2*cos(f*x + e)^2 + 2*c^2*sin(f*x + e) - 2*c^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{m} \cos \left (f x + e\right )^{2}}{{\left (c \sin \left (f x + e\right ) - c\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^2,x, algorithm="giac")

[Out]

integrate((a*sin(f*x + e) + a)^m*cos(f*x + e)^2/(c*sin(f*x + e) - c)^2, x)

________________________________________________________________________________________

maple [F]  time = 3.33, size = 0, normalized size = 0.00 \[ \int \frac {\left (\cos ^{2}\left (f x +e \right )\right ) \left (a +a \sin \left (f x +e \right )\right )^{m}}{\left (c -c \sin \left (f x +e \right )\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^2,x)

[Out]

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^2,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{m} \cos \left (f x + e\right )^{2}}{{\left (c \sin \left (f x + e\right ) - c\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^2,x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^m*cos(f*x + e)^2/(c*sin(f*x + e) - c)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\cos \left (e+f\,x\right )}^2\,{\left (a+a\,\sin \left (e+f\,x\right )\right )}^m}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(e + f*x)^2*(a + a*sin(e + f*x))^m)/(c - c*sin(e + f*x))^2,x)

[Out]

int((cos(e + f*x)^2*(a + a*sin(e + f*x))^m)/(c - c*sin(e + f*x))^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {\left (a \sin {\left (e + f x \right )} + a\right )^{m} \cos ^{2}{\left (e + f x \right )}}{\sin ^{2}{\left (e + f x \right )} - 2 \sin {\left (e + f x \right )} + 1}\, dx}{c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**m/(c-c*sin(f*x+e))**2,x)

[Out]

Integral((a*sin(e + f*x) + a)**m*cos(e + f*x)**2/(sin(e + f*x)**2 - 2*sin(e + f*x) + 1), x)/c**2

________________________________________________________________________________________