3.713 \(\int \frac {\cos ^4(c+d x) \cot ^4(c+d x)}{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=146 \[ \frac {5 \cos ^3(c+d x)}{6 a d}+\frac {5 \cos (c+d x)}{2 a d}-\frac {5 \cot ^3(c+d x)}{6 a d}+\frac {5 \cot (c+d x)}{2 a d}+\frac {\cos ^3(c+d x) \cot ^2(c+d x)}{2 a d}+\frac {\cos ^2(c+d x) \cot ^3(c+d x)}{2 a d}-\frac {5 \tanh ^{-1}(\cos (c+d x))}{2 a d}+\frac {5 x}{2 a} \]

[Out]

5/2*x/a-5/2*arctanh(cos(d*x+c))/a/d+5/2*cos(d*x+c)/a/d+5/6*cos(d*x+c)^3/a/d+5/2*cot(d*x+c)/a/d+1/2*cos(d*x+c)^
3*cot(d*x+c)^2/a/d-5/6*cot(d*x+c)^3/a/d+1/2*cos(d*x+c)^2*cot(d*x+c)^3/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 146, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 7, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.241, Rules used = {2839, 2591, 288, 302, 203, 2592, 206} \[ \frac {5 \cos ^3(c+d x)}{6 a d}+\frac {5 \cos (c+d x)}{2 a d}-\frac {5 \cot ^3(c+d x)}{6 a d}+\frac {5 \cot (c+d x)}{2 a d}+\frac {\cos ^3(c+d x) \cot ^2(c+d x)}{2 a d}+\frac {\cos ^2(c+d x) \cot ^3(c+d x)}{2 a d}-\frac {5 \tanh ^{-1}(\cos (c+d x))}{2 a d}+\frac {5 x}{2 a} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^4*Cot[c + d*x]^4)/(a + a*Sin[c + d*x]),x]

[Out]

(5*x)/(2*a) - (5*ArcTanh[Cos[c + d*x]])/(2*a*d) + (5*Cos[c + d*x])/(2*a*d) + (5*Cos[c + d*x]^3)/(6*a*d) + (5*C
ot[c + d*x])/(2*a*d) + (Cos[c + d*x]^3*Cot[c + d*x]^2)/(2*a*d) - (5*Cot[c + d*x]^3)/(6*a*d) + (Cos[c + d*x]^2*
Cot[c + d*x]^3)/(2*a*d)

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 302

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 2591

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> With[{ff = FreeFactors[Ta
n[e + f*x], x]}, Dist[(b*ff)/f, Subst[Int[(ff*x)^(m + n)/(b^2 + ff^2*x^2)^(m/2 + 1), x], x, (b*Tan[e + f*x])/f
f], x]] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2]

Rule 2592

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> With[{ff = FreeFactors[S
in[e + f*x], x]}, Dist[ff/f, Subst[Int[(ff*x)^(m + n)/(a^2 - ff^2*x^2)^((n + 1)/2), x], x, (a*Sin[e + f*x])/ff
], x]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n + 1)/2]

Rule 2839

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)]), x_Symbol] :> Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[g^2/(b*d),
Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2
 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\cos ^4(c+d x) \cot ^4(c+d x)}{a+a \sin (c+d x)} \, dx &=-\frac {\int \cos ^3(c+d x) \cot ^3(c+d x) \, dx}{a}+\frac {\int \cos ^2(c+d x) \cot ^4(c+d x) \, dx}{a}\\ &=\frac {\operatorname {Subst}\left (\int \frac {x^6}{\left (1-x^2\right )^2} \, dx,x,\cos (c+d x)\right )}{a d}-\frac {\operatorname {Subst}\left (\int \frac {x^6}{\left (1+x^2\right )^2} \, dx,x,\cot (c+d x)\right )}{a d}\\ &=\frac {\cos ^3(c+d x) \cot ^2(c+d x)}{2 a d}+\frac {\cos ^2(c+d x) \cot ^3(c+d x)}{2 a d}-\frac {5 \operatorname {Subst}\left (\int \frac {x^4}{1-x^2} \, dx,x,\cos (c+d x)\right )}{2 a d}-\frac {5 \operatorname {Subst}\left (\int \frac {x^4}{1+x^2} \, dx,x,\cot (c+d x)\right )}{2 a d}\\ &=\frac {\cos ^3(c+d x) \cot ^2(c+d x)}{2 a d}+\frac {\cos ^2(c+d x) \cot ^3(c+d x)}{2 a d}-\frac {5 \operatorname {Subst}\left (\int \left (-1-x^2+\frac {1}{1-x^2}\right ) \, dx,x,\cos (c+d x)\right )}{2 a d}-\frac {5 \operatorname {Subst}\left (\int \left (-1+x^2+\frac {1}{1+x^2}\right ) \, dx,x,\cot (c+d x)\right )}{2 a d}\\ &=\frac {5 \cos (c+d x)}{2 a d}+\frac {5 \cos ^3(c+d x)}{6 a d}+\frac {5 \cot (c+d x)}{2 a d}+\frac {\cos ^3(c+d x) \cot ^2(c+d x)}{2 a d}-\frac {5 \cot ^3(c+d x)}{6 a d}+\frac {\cos ^2(c+d x) \cot ^3(c+d x)}{2 a d}-\frac {5 \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\cos (c+d x)\right )}{2 a d}-\frac {5 \operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\cot (c+d x)\right )}{2 a d}\\ &=\frac {5 x}{2 a}-\frac {5 \tanh ^{-1}(\cos (c+d x))}{2 a d}+\frac {5 \cos (c+d x)}{2 a d}+\frac {5 \cos ^3(c+d x)}{6 a d}+\frac {5 \cot (c+d x)}{2 a d}+\frac {\cos ^3(c+d x) \cot ^2(c+d x)}{2 a d}-\frac {5 \cot ^3(c+d x)}{6 a d}+\frac {\cos ^2(c+d x) \cot ^3(c+d x)}{2 a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.81, size = 197, normalized size = 1.35 \[ -\frac {\csc ^3(c+d x) \left (-180 c \sin (c+d x)-180 d x \sin (c+d x)-75 \sin (2 (c+d x))+60 c \sin (3 (c+d x))+60 d x \sin (3 (c+d x))+24 \sin (4 (c+d x))+\sin (6 (c+d x))-30 \cos (c+d x)+65 \cos (3 (c+d x))-3 \cos (5 (c+d x))-180 \sin (c+d x) \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+60 \sin (3 (c+d x)) \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+180 \sin (c+d x) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-60 \sin (3 (c+d x)) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )\right )}{96 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^4*Cot[c + d*x]^4)/(a + a*Sin[c + d*x]),x]

[Out]

-1/96*(Csc[c + d*x]^3*(-30*Cos[c + d*x] + 65*Cos[3*(c + d*x)] - 3*Cos[5*(c + d*x)] - 180*c*Sin[c + d*x] - 180*
d*x*Sin[c + d*x] + 180*Log[Cos[(c + d*x)/2]]*Sin[c + d*x] - 180*Log[Sin[(c + d*x)/2]]*Sin[c + d*x] - 75*Sin[2*
(c + d*x)] + 60*c*Sin[3*(c + d*x)] + 60*d*x*Sin[3*(c + d*x)] - 60*Log[Cos[(c + d*x)/2]]*Sin[3*(c + d*x)] + 60*
Log[Sin[(c + d*x)/2]]*Sin[3*(c + d*x)] + 24*Sin[4*(c + d*x)] + Sin[6*(c + d*x)]))/(a*d)

________________________________________________________________________________________

fricas [A]  time = 0.49, size = 168, normalized size = 1.15 \[ -\frac {6 \, \cos \left (d x + c\right )^{5} - 40 \, \cos \left (d x + c\right )^{3} + 15 \, {\left (\cos \left (d x + c\right )^{2} - 1\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) - 15 \, {\left (\cos \left (d x + c\right )^{2} - 1\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) - 2 \, {\left (2 \, \cos \left (d x + c\right )^{5} + 15 \, d x \cos \left (d x + c\right )^{2} + 10 \, \cos \left (d x + c\right )^{3} - 15 \, d x - 15 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right ) + 30 \, \cos \left (d x + c\right )}{12 \, {\left (a d \cos \left (d x + c\right )^{2} - a d\right )} \sin \left (d x + c\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^8*csc(d*x+c)^4/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/12*(6*cos(d*x + c)^5 - 40*cos(d*x + c)^3 + 15*(cos(d*x + c)^2 - 1)*log(1/2*cos(d*x + c) + 1/2)*sin(d*x + c)
 - 15*(cos(d*x + c)^2 - 1)*log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - 2*(2*cos(d*x + c)^5 + 15*d*x*cos(d*x +
c)^2 + 10*cos(d*x + c)^3 - 15*d*x - 15*cos(d*x + c))*sin(d*x + c) + 30*cos(d*x + c))/((a*d*cos(d*x + c)^2 - a*
d)*sin(d*x + c))

________________________________________________________________________________________

giac [A]  time = 0.38, size = 228, normalized size = 1.56 \[ \frac {\frac {180 \, {\left (d x + c\right )}}{a} + \frac {180 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a} + \frac {3 \, {\left (a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 3 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 27 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{a^{3}} - \frac {110 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} - 9 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{8} - 111 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 240 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} - 273 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 306 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 253 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 72 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 9 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}^{3} a}}{72 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^8*csc(d*x+c)^4/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/72*(180*(d*x + c)/a + 180*log(abs(tan(1/2*d*x + 1/2*c)))/a + 3*(a^2*tan(1/2*d*x + 1/2*c)^3 - 3*a^2*tan(1/2*d
*x + 1/2*c)^2 - 27*a^2*tan(1/2*d*x + 1/2*c))/a^3 - (110*tan(1/2*d*x + 1/2*c)^9 - 9*tan(1/2*d*x + 1/2*c)^8 - 11
1*tan(1/2*d*x + 1/2*c)^7 - 240*tan(1/2*d*x + 1/2*c)^6 - 273*tan(1/2*d*x + 1/2*c)^5 - 306*tan(1/2*d*x + 1/2*c)^
4 - 253*tan(1/2*d*x + 1/2*c)^3 - 72*tan(1/2*d*x + 1/2*c)^2 - 9*tan(1/2*d*x + 1/2*c) + 3)/((tan(1/2*d*x + 1/2*c
)^3 + tan(1/2*d*x + 1/2*c))^3*a))/d

________________________________________________________________________________________

maple [B]  time = 0.64, size = 306, normalized size = 2.10 \[ \frac {\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )}{24 a d}-\frac {\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}{8 a d}-\frac {9 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 a d}-\frac {\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )}{a d \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}+\frac {6 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}+\frac {8 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}+\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{a d \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}+\frac {14}{3 a d \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}+\frac {5 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d}-\frac {1}{24 a d \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}+\frac {1}{8 a d \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+\frac {9}{8 a d \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}+\frac {5 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^8*csc(d*x+c)^4/(a+a*sin(d*x+c)),x)

[Out]

1/24/a/d*tan(1/2*d*x+1/2*c)^3-1/8/a/d*tan(1/2*d*x+1/2*c)^2-9/8/a/d*tan(1/2*d*x+1/2*c)-1/a/d/(1+tan(1/2*d*x+1/2
*c)^2)^3*tan(1/2*d*x+1/2*c)^5+6/a/d/(1+tan(1/2*d*x+1/2*c)^2)^3*tan(1/2*d*x+1/2*c)^4+8/a/d/(1+tan(1/2*d*x+1/2*c
)^2)^3*tan(1/2*d*x+1/2*c)^2+1/a/d/(1+tan(1/2*d*x+1/2*c)^2)^3*tan(1/2*d*x+1/2*c)+14/3/a/d/(1+tan(1/2*d*x+1/2*c)
^2)^3+5/a/d*arctan(tan(1/2*d*x+1/2*c))-1/24/a/d/tan(1/2*d*x+1/2*c)^3+1/8/a/d/tan(1/2*d*x+1/2*c)^2+9/8/a/d/tan(
1/2*d*x+1/2*c)+5/2/a/d*ln(tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

maxima [B]  time = 0.43, size = 362, normalized size = 2.48 \[ -\frac {\frac {\frac {27 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {3 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a} - \frac {\frac {3 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {24 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {121 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {102 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {201 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {80 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac {147 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + \frac {3 \, \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} - 1}{\frac {a \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, a \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {3 \, a \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + \frac {a \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}}} - \frac {120 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} - \frac {60 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a}}{24 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^8*csc(d*x+c)^4/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/24*((27*sin(d*x + c)/(cos(d*x + c) + 1) + 3*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - sin(d*x + c)^3/(cos(d*x +
 c) + 1)^3)/a - (3*sin(d*x + c)/(cos(d*x + c) + 1) + 24*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 121*sin(d*x + c)
^3/(cos(d*x + c) + 1)^3 + 102*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 201*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 +
80*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 147*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 + 3*sin(d*x + c)^8/(cos(d*x +
 c) + 1)^8 - 1)/(a*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*a*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 + 3*a*sin(d*x
 + c)^7/(cos(d*x + c) + 1)^7 + a*sin(d*x + c)^9/(cos(d*x + c) + 1)^9) - 120*arctan(sin(d*x + c)/(cos(d*x + c)
+ 1))/a - 60*log(sin(d*x + c)/(cos(d*x + c) + 1))/a)/d

________________________________________________________________________________________

mupad [B]  time = 9.06, size = 290, normalized size = 1.99 \[ \frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{24\,a\,d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,a\,d}-\frac {5\,\mathrm {atan}\left (\frac {25\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{25\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-25}+\frac {25}{25\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-25}\right )}{a\,d}+\frac {5\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{2\,a\,d}+\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+49\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\frac {80\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{3}+67\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+34\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+\frac {121\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{3}+8\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-\frac {1}{3}}{d\,\left (8\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9+24\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+24\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+8\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\right )}-\frac {9\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8\,a\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^8/(sin(c + d*x)^4*(a + a*sin(c + d*x))),x)

[Out]

tan(c/2 + (d*x)/2)^3/(24*a*d) - tan(c/2 + (d*x)/2)^2/(8*a*d) - (5*atan((25*tan(c/2 + (d*x)/2))/(25*tan(c/2 + (
d*x)/2) - 25) + 25/(25*tan(c/2 + (d*x)/2) - 25)))/(a*d) + (5*log(tan(c/2 + (d*x)/2)))/(2*a*d) + (tan(c/2 + (d*
x)/2) + 8*tan(c/2 + (d*x)/2)^2 + (121*tan(c/2 + (d*x)/2)^3)/3 + 34*tan(c/2 + (d*x)/2)^4 + 67*tan(c/2 + (d*x)/2
)^5 + (80*tan(c/2 + (d*x)/2)^6)/3 + 49*tan(c/2 + (d*x)/2)^7 + tan(c/2 + (d*x)/2)^8 - 1/3)/(d*(8*a*tan(c/2 + (d
*x)/2)^3 + 24*a*tan(c/2 + (d*x)/2)^5 + 24*a*tan(c/2 + (d*x)/2)^7 + 8*a*tan(c/2 + (d*x)/2)^9)) - (9*tan(c/2 + (
d*x)/2))/(8*a*d)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**8*csc(d*x+c)**4/(a+a*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________