3.8 \(\int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{7/2}} \, dx\)

Optimal. Leaf size=48 \[ \frac {\cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{4 a c f (c-c \sin (e+f x))^{5/2}} \]

[Out]

1/4*cos(f*x+e)*(a+a*sin(f*x+e))^(3/2)/a/c/f/(c-c*sin(f*x+e))^(5/2)

________________________________________________________________________________________

Rubi [A]  time = 0.32, antiderivative size = 48, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {2841, 2742} \[ \frac {\cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{4 a c f (c-c \sin (e+f x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[e + f*x]^2*Sqrt[a + a*Sin[e + f*x]])/(c - c*Sin[e + f*x])^(7/2),x]

[Out]

(Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2))/(4*a*c*f*(c - c*Sin[e + f*x])^(5/2))

Rule 2742

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n)/(a*f*(2*m + 1)), x] /; FreeQ[{a, b, c, d, e, f
, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && NeQ[m, -2^(-1)]

Rule 2841

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rubi steps

\begin {align*} \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{7/2}} \, dx &=\frac {\int \frac {(a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{5/2}} \, dx}{a c}\\ &=\frac {\cos (e+f x) (a+a \sin (e+f x))^{3/2}}{4 a c f (c-c \sin (e+f x))^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.39, size = 90, normalized size = 1.88 \[ \frac {\sin (e+f x) \sqrt {a (\sin (e+f x)+1)} \sqrt {c-c \sin (e+f x)}}{c^4 f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^5 \left (\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[e + f*x]^2*Sqrt[a + a*Sin[e + f*x]])/(c - c*Sin[e + f*x])^(7/2),x]

[Out]

(Sin[e + f*x]*Sqrt[a*(1 + Sin[e + f*x])]*Sqrt[c - c*Sin[e + f*x]])/(c^4*f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2]
)^5*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2]))

________________________________________________________________________________________

fricas [A]  time = 0.44, size = 79, normalized size = 1.65 \[ -\frac {\sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{c^{4} f \cos \left (f x + e\right )^{3} + 2 \, c^{4} f \cos \left (f x + e\right ) \sin \left (f x + e\right ) - 2 \, c^{4} f \cos \left (f x + e\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(7/2),x, algorithm="fricas")

[Out]

-sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*sin(f*x + e)/(c^4*f*cos(f*x + e)^3 + 2*c^4*f*cos(f*x + e)*
sin(f*x + e) - 2*c^4*f*cos(f*x + e))

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(7/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.38, size = 96, normalized size = 2.00 \[ -\frac {\sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \sin \left (f x +e \right ) \left (\sin \left (f x +e \right ) \cos \left (f x +e \right )-\left (\cos ^{2}\left (f x +e \right )\right )-2 \sin \left (f x +e \right )-\cos \left (f x +e \right )+2\right )}{f \left (-c \left (\sin \left (f x +e \right )-1\right )\right )^{\frac {7}{2}} \left (1-\cos \left (f x +e \right )+\sin \left (f x +e \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(7/2),x)

[Out]

-1/f*(a*(1+sin(f*x+e)))^(1/2)*sin(f*x+e)*(sin(f*x+e)*cos(f*x+e)-cos(f*x+e)^2-2*sin(f*x+e)-cos(f*x+e)+2)/(-c*(s
in(f*x+e)-1))^(7/2)/(1-cos(f*x+e)+sin(f*x+e))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a \sin \left (f x + e\right ) + a} \cos \left (f x + e\right )^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(7/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(f*x + e) + a)*cos(f*x + e)^2/(-c*sin(f*x + e) + c)^(7/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {{\cos \left (e+f\,x\right )}^2\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{7/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(e + f*x)^2*(a + a*sin(e + f*x))^(1/2))/(c - c*sin(e + f*x))^(7/2),x)

[Out]

int((cos(e + f*x)^2*(a + a*sin(e + f*x))^(1/2))/(c - c*sin(e + f*x))^(7/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**(1/2)/(c-c*sin(f*x+e))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________