3.936 \(\int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{3/2} (c+d \sin (e+f x))} \, dx\)

Optimal. Leaf size=123 \[ \frac {2 \sqrt {c+d} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a \sin (e+f x)+a}}\right )}{a^{3/2} \sqrt {d} f (c-d)}-\frac {2 \sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{a^{3/2} f (c-d)} \]

[Out]

-2*arctanh(1/2*cos(f*x+e)*a^(1/2)*2^(1/2)/(a+a*sin(f*x+e))^(1/2))*2^(1/2)/a^(3/2)/(c-d)/f+2*arctanh(cos(f*x+e)
*a^(1/2)*d^(1/2)/(c+d)^(1/2)/(a+a*sin(f*x+e))^(1/2))*(c+d)^(1/2)/a^(3/2)/(c-d)/f/d^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.55, antiderivative size = 123, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {2916, 2985, 2649, 206, 2773, 208} \[ \frac {2 \sqrt {c+d} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a \sin (e+f x)+a}}\right )}{a^{3/2} \sqrt {d} f (c-d)}-\frac {2 \sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{a^{3/2} f (c-d)} \]

Antiderivative was successfully verified.

[In]

Int[Cos[e + f*x]^2/((a + a*Sin[e + f*x])^(3/2)*(c + d*Sin[e + f*x])),x]

[Out]

(-2*Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]])])/(a^(3/2)*(c - d)*f) + (2*Sqrt[
c + d]*ArcTanh[(Sqrt[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sin[e + f*x]])])/(a^(3/2)*(c - d)*Sqrt[d
]*f)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2916

Int[cos[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_), x_Symbol] :> Dist[1/b^2, Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*(a - b*Sin[e + f*x])
, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[2*m, 2*n]

Rule 2985

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{3/2} (c+d \sin (e+f x))} \, dx &=\frac {\int \frac {a-a \sin (e+f x)}{\sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))} \, dx}{a^2}\\ &=\frac {2 \int \frac {1}{\sqrt {a+a \sin (e+f x)}} \, dx}{a (c-d)}-\frac {(c+d) \int \frac {\sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx}{a^2 (c-d)}\\ &=-\frac {4 \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{a (c-d) f}+\frac {(2 (c+d)) \operatorname {Subst}\left (\int \frac {1}{a c+a d-d x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{a (c-d) f}\\ &=-\frac {2 \sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a+a \sin (e+f x)}}\right )}{a^{3/2} (c-d) f}+\frac {2 \sqrt {c+d} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a+a \sin (e+f x)}}\right )}{a^{3/2} (c-d) \sqrt {d} f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 2.80, size = 220, normalized size = 1.79 \[ \frac {(-1)^{3/4} \left (\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )\right )^3 \left (\sqrt [4]{-1} \sqrt {c+d} \left (\log \left (\sec ^2\left (\frac {1}{4} (e+f x)\right ) \left (\sqrt {c+d}-\sqrt {d} \sin \left (\frac {1}{2} (e+f x)\right )+\sqrt {d} \cos \left (\frac {1}{2} (e+f x)\right )\right )\right )-\log \left (\sec ^2\left (\frac {1}{4} (e+f x)\right ) \left (\sqrt {c+d}+\sqrt {d} \sin \left (\frac {1}{2} (e+f x)\right )-\sqrt {d} \cos \left (\frac {1}{2} (e+f x)\right )\right )\right )\right )-(4+4 i) \sqrt {d} \tanh ^{-1}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \left (\tan \left (\frac {1}{4} (e+f x)\right )-1\right )\right )\right )}{\sqrt {d} f (d-c) (a (\sin (e+f x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[e + f*x]^2/((a + a*Sin[e + f*x])^(3/2)*(c + d*Sin[e + f*x])),x]

[Out]

((-1)^(3/4)*((-4 - 4*I)*Sqrt[d]*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(e + f*x)/4])] + (-1)^(1/4)*Sqrt[c +
d]*(Log[Sec[(e + f*x)/4]^2*(Sqrt[c + d] + Sqrt[d]*Cos[(e + f*x)/2] - Sqrt[d]*Sin[(e + f*x)/2])] - Log[Sec[(e +
 f*x)/4]^2*(Sqrt[c + d] - Sqrt[d]*Cos[(e + f*x)/2] + Sqrt[d]*Sin[(e + f*x)/2])]))*(Cos[(e + f*x)/2] + Sin[(e +
 f*x)/2])^3)/(Sqrt[d]*(-c + d)*f*(a*(1 + Sin[e + f*x]))^(3/2))

________________________________________________________________________________________

fricas [B]  time = 0.59, size = 667, normalized size = 5.42 \[ \left [-\frac {\sqrt {\frac {c + d}{a d}} \log \left (\frac {d^{2} \cos \left (f x + e\right )^{3} - {\left (6 \, c d + 7 \, d^{2}\right )} \cos \left (f x + e\right )^{2} - c^{2} - 2 \, c d - d^{2} - 4 \, {\left (d^{2} \cos \left (f x + e\right )^{2} - c d - 3 \, d^{2} - {\left (c d + 2 \, d^{2}\right )} \cos \left (f x + e\right ) + {\left (d^{2} \cos \left (f x + e\right ) + c d + 3 \, d^{2}\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {\frac {c + d}{a d}} - {\left (c^{2} + 8 \, c d + 9 \, d^{2}\right )} \cos \left (f x + e\right ) + {\left (d^{2} \cos \left (f x + e\right )^{2} - c^{2} - 2 \, c d - d^{2} + 2 \, {\left (3 \, c d + 4 \, d^{2}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{d^{2} \cos \left (f x + e\right )^{3} + {\left (2 \, c d + d^{2}\right )} \cos \left (f x + e\right )^{2} - c^{2} - 2 \, c d - d^{2} - {\left (c^{2} + d^{2}\right )} \cos \left (f x + e\right ) + {\left (d^{2} \cos \left (f x + e\right )^{2} - 2 \, c d \cos \left (f x + e\right ) - c^{2} - 2 \, c d - d^{2}\right )} \sin \left (f x + e\right )}\right ) + \frac {2 \, \sqrt {2} \log \left (-\frac {\cos \left (f x + e\right )^{2} - {\left (\cos \left (f x + e\right ) - 2\right )} \sin \left (f x + e\right ) + \frac {2 \, \sqrt {2} \sqrt {a \sin \left (f x + e\right ) + a} {\left (\cos \left (f x + e\right ) - \sin \left (f x + e\right ) + 1\right )}}{\sqrt {a}} + 3 \, \cos \left (f x + e\right ) + 2}{\cos \left (f x + e\right )^{2} - {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right )}{\sqrt {a}}}{2 \, {\left (a c - a d\right )} f}, \frac {\sqrt {-\frac {c + d}{a d}} \arctan \left (\frac {\sqrt {a \sin \left (f x + e\right ) + a} {\left (d \sin \left (f x + e\right ) - c - 2 \, d\right )} \sqrt {-\frac {c + d}{a d}}}{2 \, {\left (c + d\right )} \cos \left (f x + e\right )}\right ) - \frac {\sqrt {2} \log \left (-\frac {\cos \left (f x + e\right )^{2} - {\left (\cos \left (f x + e\right ) - 2\right )} \sin \left (f x + e\right ) + \frac {2 \, \sqrt {2} \sqrt {a \sin \left (f x + e\right ) + a} {\left (\cos \left (f x + e\right ) - \sin \left (f x + e\right ) + 1\right )}}{\sqrt {a}} + 3 \, \cos \left (f x + e\right ) + 2}{\cos \left (f x + e\right )^{2} - {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right )}{\sqrt {a}}}{{\left (a c - a d\right )} f}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e)),x, algorithm="fricas")

[Out]

[-1/2*(sqrt((c + d)/(a*d))*log((d^2*cos(f*x + e)^3 - (6*c*d + 7*d^2)*cos(f*x + e)^2 - c^2 - 2*c*d - d^2 - 4*(d
^2*cos(f*x + e)^2 - c*d - 3*d^2 - (c*d + 2*d^2)*cos(f*x + e) + (d^2*cos(f*x + e) + c*d + 3*d^2)*sin(f*x + e))*
sqrt(a*sin(f*x + e) + a)*sqrt((c + d)/(a*d)) - (c^2 + 8*c*d + 9*d^2)*cos(f*x + e) + (d^2*cos(f*x + e)^2 - c^2
- 2*c*d - d^2 + 2*(3*c*d + 4*d^2)*cos(f*x + e))*sin(f*x + e))/(d^2*cos(f*x + e)^3 + (2*c*d + d^2)*cos(f*x + e)
^2 - c^2 - 2*c*d - d^2 - (c^2 + d^2)*cos(f*x + e) + (d^2*cos(f*x + e)^2 - 2*c*d*cos(f*x + e) - c^2 - 2*c*d - d
^2)*sin(f*x + e))) + 2*sqrt(2)*log(-(cos(f*x + e)^2 - (cos(f*x + e) - 2)*sin(f*x + e) + 2*sqrt(2)*sqrt(a*sin(f
*x + e) + a)*(cos(f*x + e) - sin(f*x + e) + 1)/sqrt(a) + 3*cos(f*x + e) + 2)/(cos(f*x + e)^2 - (cos(f*x + e) +
 2)*sin(f*x + e) - cos(f*x + e) - 2))/sqrt(a))/((a*c - a*d)*f), (sqrt(-(c + d)/(a*d))*arctan(1/2*sqrt(a*sin(f*
x + e) + a)*(d*sin(f*x + e) - c - 2*d)*sqrt(-(c + d)/(a*d))/((c + d)*cos(f*x + e))) - sqrt(2)*log(-(cos(f*x +
e)^2 - (cos(f*x + e) - 2)*sin(f*x + e) + 2*sqrt(2)*sqrt(a*sin(f*x + e) + a)*(cos(f*x + e) - sin(f*x + e) + 1)/
sqrt(a) + 3*cos(f*x + e) + 2)/(cos(f*x + e)^2 - (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2))/sqrt(a))/
((a*c - a*d)*f)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e)),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (4*p
i/t_nostep/2)>(-4*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign
: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Warning, integration of abs or sign assumes constant sign by intervals (
correct if the argument is real):Check [abs(cos((f*t_nostep+exp(1))/2-pi/4))]Unable to check sign: (4*pi/t_nos
tep/2)>(-4*pi/t_nostep/2)Unable to check sign: (4*pi/t_nostep/2)>(-4*pi/t_nostep/2)Discontinuities at zeroes o
f cos((f*t_nostep+exp(1))/2-pi/4) were not checkedUnable to check sign: (4*pi/t_nostep/2)>(-4*pi/t_nostep/2)Un
able to check sign: (4*pi/t_nostep/2)>(-4*pi/t_nostep/2)Unable to check sign: (4*pi/t_nostep/2)>(-4*pi/t_noste
p/2)Unable to check sign: (4*pi/t_nostep/2)>(-4*pi/t_nostep/2)Unable to check sign: (4*pi/t_nostep/2)>(-4*pi/t
_nostep/2)Unable to check sign: (4*pi/t_nostep/2)>(-4*pi/t_nostep/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/
2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign
: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/
2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign
: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/
2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign
: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/
2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign
: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/
2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign
: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/
2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign
: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/
2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign
: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/
2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign
: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/
2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign
: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/
2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign
: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/
2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign
: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/
2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign
: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/
2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign
: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/
2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign
: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/
2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign
: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/t_nostep/2)>(-4*pi/t_nostep/2)Unable to check sign: (2*pi/
x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Warning, integration of abs or sign assumes consta
nt sign by intervals (correct if the argument is real):Check [abs(t_nostep+1)]Warning, assuming -c^3*d^5-c^2*d
^6+c*d^7+d^8-c*d^7-d^8 is positive. Hint: run assume to make assumptions on a variableWarning, assuming -a*c^3
*d^5-a*c^2*d^6+a*c*d^7+a*d^8-a*c*d^7-a*d^8 is positive. Hint: run assume to make assumptions on a variableWarn
ing, need to choose a branch for the root of a polynomial with parameters. This might be wrong.Non regular val
ue [0] was discarded and replaced randomly by 0=[-90]Evaluation time: 65.87sym2poly/r2sym(const gen & e,const
index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 1.86, size = 160, normalized size = 1.30 \[ -\frac {2 \left (1+\sin \left (f x +e \right )\right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, \left (\sqrt {2}\, \arctanh \left (\frac {\sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) \sqrt {a \left (c +d \right ) d}-\arctanh \left (\frac {\sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, d}{\sqrt {a \left (c +d \right ) d}}\right ) \sqrt {a}\, c -\arctanh \left (\frac {\sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, d}{\sqrt {a \left (c +d \right ) d}}\right ) \sqrt {a}\, d \right )}{a^{\frac {3}{2}} \left (c -d \right ) \sqrt {a \left (c +d \right ) d}\, \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2/(a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e)),x)

[Out]

-2/a^(3/2)*(1+sin(f*x+e))*(-a*(sin(f*x+e)-1))^(1/2)*(2^(1/2)*arctanh(1/2*(-a*(sin(f*x+e)-1))^(1/2)*2^(1/2)/a^(
1/2))*(a*(c+d)*d)^(1/2)-arctanh((-a*(sin(f*x+e)-1))^(1/2)*d/(a*(c+d)*d)^(1/2))*a^(1/2)*c-arctanh((-a*(sin(f*x+
e)-1))^(1/2)*d/(a*(c+d)*d)^(1/2))*a^(1/2)*d)/(c-d)/(a*(c+d)*d)^(1/2)/cos(f*x+e)/(a+a*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (f x + e\right )^{2}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} {\left (d \sin \left (f x + e\right ) + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate(cos(f*x + e)^2/((a*sin(f*x + e) + a)^(3/2)*(d*sin(f*x + e) + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\cos \left (e+f\,x\right )}^2}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}\,\left (c+d\,\sin \left (e+f\,x\right )\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(e + f*x)^2/((a + a*sin(e + f*x))^(3/2)*(c + d*sin(e + f*x))),x)

[Out]

int(cos(e + f*x)^2/((a + a*sin(e + f*x))^(3/2)*(c + d*sin(e + f*x))), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2/(a+a*sin(f*x+e))**(3/2)/(c+d*sin(f*x+e)),x)

[Out]

Timed out

________________________________________________________________________________________