3.155 \(\int (a+a \sec (c+d x))^{3/2} \tan ^2(c+d x) \, dx\)

Optimal. Leaf size=128 \[ -\frac {2 a^{3/2} \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {2 a^4 \tan ^5(c+d x)}{5 d (a \sec (c+d x)+a)^{5/2}}+\frac {2 a^3 \tan ^3(c+d x)}{d (a \sec (c+d x)+a)^{3/2}}+\frac {2 a^2 \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}} \]

[Out]

-2*a^(3/2)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+2*a^2*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+2*a^3
*tan(d*x+c)^3/d/(a+a*sec(d*x+c))^(3/2)+2/5*a^4*tan(d*x+c)^5/d/(a+a*sec(d*x+c))^(5/2)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 128, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3887, 461, 203} \[ \frac {2 a^4 \tan ^5(c+d x)}{5 d (a \sec (c+d x)+a)^{5/2}}+\frac {2 a^3 \tan ^3(c+d x)}{d (a \sec (c+d x)+a)^{3/2}}-\frac {2 a^{3/2} \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {2 a^2 \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^(3/2)*Tan[c + d*x]^2,x]

[Out]

(-2*a^(3/2)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (2*a^2*Tan[c + d*x])/(d*Sqrt[a + a*Se
c[c + d*x]]) + (2*a^3*Tan[c + d*x]^3)/(d*(a + a*Sec[c + d*x])^(3/2)) + (2*a^4*Tan[c + d*x]^5)/(5*d*(a + a*Sec[
c + d*x])^(5/2))

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 461

Int[(((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegr
and[((e*x)^m*(a + b*x^n)^p)/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[n
, 0] && IGtQ[p, 0] && (IntegerQ[m] || IGtQ[2*(m + 1), 0] ||  !RationalQ[m])

Rule 3887

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.), x_Symbol] :> Dist[(-2*a^(m/2 +
 n + 1/2))/d, Subst[Int[(x^m*(2 + a*x^2)^(m/2 + n - 1/2))/(1 + a*x^2), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c +
d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && IntegerQ[n - 1/2]

Rubi steps

\begin {align*} \int (a+a \sec (c+d x))^{3/2} \tan ^2(c+d x) \, dx &=-\frac {\left (2 a^3\right ) \operatorname {Subst}\left (\int \frac {x^2 \left (2+a x^2\right )^2}{1+a x^2} \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=-\frac {\left (2 a^3\right ) \operatorname {Subst}\left (\int \left (\frac {1}{a}+3 x^2+a x^4-\frac {1}{a \left (1+a x^2\right )}\right ) \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=\frac {2 a^2 \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {2 a^3 \tan ^3(c+d x)}{d (a+a \sec (c+d x))^{3/2}}+\frac {2 a^4 \tan ^5(c+d x)}{5 d (a+a \sec (c+d x))^{5/2}}+\frac {\left (2 a^2\right ) \operatorname {Subst}\left (\int \frac {1}{1+a x^2} \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=-\frac {2 a^{3/2} \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {2 a^2 \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {2 a^3 \tan ^3(c+d x)}{d (a+a \sec (c+d x))^{3/2}}+\frac {2 a^4 \tan ^5(c+d x)}{5 d (a+a \sec (c+d x))^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 5.59, size = 97, normalized size = 0.76 \[ \frac {a \sec \left (\frac {1}{2} (c+d x)\right ) \sec ^2(c+d x) \sqrt {a (\sec (c+d x)+1)} \left (5 \sin \left (\frac {3}{2} (c+d x)\right )+\sin \left (\frac {5}{2} (c+d x)\right )-10 \sqrt {2} \sin ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^{\frac {5}{2}}(c+d x)\right )}{10 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])^(3/2)*Tan[c + d*x]^2,x]

[Out]

(a*Sec[(c + d*x)/2]*Sec[c + d*x]^2*Sqrt[a*(1 + Sec[c + d*x])]*(-10*Sqrt[2]*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]]*Co
s[c + d*x]^(5/2) + 5*Sin[(3*(c + d*x))/2] + Sin[(5*(c + d*x))/2]))/(10*d)

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 321, normalized size = 2.51 \[ \left [\frac {5 \, {\left (a \cos \left (d x + c\right )^{3} + a \cos \left (d x + c\right )^{2}\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (a \cos \left (d x + c\right )^{2} + 3 \, a \cos \left (d x + c\right ) + a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{5 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}}, \frac {2 \, {\left (5 \, {\left (a \cos \left (d x + c\right )^{3} + a \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) + {\left (a \cos \left (d x + c\right )^{2} + 3 \, a \cos \left (d x + c\right ) + a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )\right )}}{5 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*tan(d*x+c)^2,x, algorithm="fricas")

[Out]

[1/5*(5*(a*cos(d*x + c)^3 + a*cos(d*x + c)^2)*sqrt(-a)*log((2*a*cos(d*x + c)^2 + 2*sqrt(-a)*sqrt((a*cos(d*x +
c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(a*cos(d*x + c)^
2 + 3*a*cos(d*x + c) + a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^3 + d*cos(d*x
+ c)^2), 2/5*(5*(a*cos(d*x + c)^3 + a*cos(d*x + c)^2)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*c
os(d*x + c)/(sqrt(a)*sin(d*x + c))) + (a*cos(d*x + c)^2 + 3*a*cos(d*x + c) + a)*sqrt((a*cos(d*x + c) + a)/cos(
d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2)]

________________________________________________________________________________________

giac [A]  time = 5.50, size = 224, normalized size = 1.75 \[ \frac {\frac {5 \, \sqrt {-a} a^{2} \log \left (\frac {{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right ) \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{{\left | a \right |}} - \frac {2 \, {\left (\sqrt {2} a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 5 \, \sqrt {2} a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}}{5 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*tan(d*x+c)^2,x, algorithm="giac")

[Out]

1/5*(5*sqrt(-a)*a^2*log(abs(2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - 4*sqrt
(2)*abs(a) - 6*a)/abs(2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 4*sqrt(2)*ab
s(a) - 6*a))*sgn(cos(d*x + c))/abs(a) - 2*(sqrt(2)*a^4*sgn(cos(d*x + c))*tan(1/2*d*x + 1/2*c)^4 - 5*sqrt(2)*a^
4*sgn(cos(d*x + c)))*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)^2*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a
)))/d

________________________________________________________________________________________

maple [B]  time = 1.02, size = 300, normalized size = 2.34 \[ \frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (5 \sqrt {2}\, \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}}+10 \sqrt {2}\, \sin \left (d x +c \right ) \cos \left (d x +c \right ) \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}}+5 \sqrt {2}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \sin \left (d x +c \right )-8 \left (\cos ^{3}\left (d x +c \right )\right )-16 \left (\cos ^{2}\left (d x +c \right )\right )+16 \cos \left (d x +c \right )+8\right ) a}{20 d \sin \left (d x +c \right ) \cos \left (d x +c \right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^(3/2)*tan(d*x+c)^2,x)

[Out]

1/20/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(5*2^(1/2)*sin(d*x+c)*cos(d*x+c)^2*arctanh(1/2*(-2*cos(d*x+c)/(1+co
s(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)+10*2^(1/2)*sin(d*x+c)*cos
(d*x+c)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(
d*x+c)))^(5/2)+5*2^(1/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*(-2*c
os(d*x+c)/(1+cos(d*x+c)))^(5/2)*sin(d*x+c)-8*cos(d*x+c)^3-16*cos(d*x+c)^2+16*cos(d*x+c)+8)/sin(d*x+c)/cos(d*x+
c)^2*a

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*tan(d*x+c)^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\mathrm {tan}\left (c+d\,x\right )}^2\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^2*(a + a/cos(c + d*x))^(3/2),x)

[Out]

int(tan(c + d*x)^2*(a + a/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \tan ^{2}{\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**(3/2)*tan(d*x+c)**2,x)

[Out]

Integral((a*(sec(c + d*x) + 1))**(3/2)*tan(c + d*x)**2, x)

________________________________________________________________________________________