3.198 \(\int \frac {\cot (c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=144 \[ \frac {2 \tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {a}}\right )}{a^{5/2} d}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {2} \sqrt {a}}\right )}{4 \sqrt {2} a^{5/2} d}-\frac {7}{4 a^2 d \sqrt {a \sec (c+d x)+a}}-\frac {1}{2 a d (a \sec (c+d x)+a)^{3/2}}-\frac {1}{5 d (a \sec (c+d x)+a)^{5/2}} \]

[Out]

2*arctanh((a+a*sec(d*x+c))^(1/2)/a^(1/2))/a^(5/2)/d-1/5/d/(a+a*sec(d*x+c))^(5/2)-1/2/a/d/(a+a*sec(d*x+c))^(3/2
)-1/8*arctanh(1/2*(a+a*sec(d*x+c))^(1/2)*2^(1/2)/a^(1/2))/a^(5/2)/d*2^(1/2)-7/4/a^2/d/(a+a*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 144, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3880, 85, 152, 156, 63, 207} \[ -\frac {7}{4 a^2 d \sqrt {a \sec (c+d x)+a}}+\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {a}}\right )}{a^{5/2} d}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {2} \sqrt {a}}\right )}{4 \sqrt {2} a^{5/2} d}-\frac {1}{2 a d (a \sec (c+d x)+a)^{3/2}}-\frac {1}{5 d (a \sec (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(2*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/(a^(5/2)*d) - ArcTanh[Sqrt[a + a*Sec[c + d*x]]/(Sqrt[2]*Sqrt[a])
]/(4*Sqrt[2]*a^(5/2)*d) - 1/(5*d*(a + a*Sec[c + d*x])^(5/2)) - 1/(2*a*d*(a + a*Sec[c + d*x])^(3/2)) - 7/(4*a^2
*d*Sqrt[a + a*Sec[c + d*x]])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 85

Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Simp[(f*(e + f*x)^(p +
 1))/((p + 1)*(b*e - a*f)*(d*e - c*f)), x] + Dist[1/((b*e - a*f)*(d*e - c*f)), Int[((b*d*e - b*c*f - a*d*f - b
*d*f*x)*(e + f*x)^(p + 1))/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[p, -1]

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 3880

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Dist[(d*b^(m - 1)
)^(-1), Subst[Int[((-a + b*x)^((m - 1)/2)*(a + b*x)^((m - 1)/2 + n))/x, x], x, Csc[c + d*x]], x] /; FreeQ[{a,
b, c, d, n}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int \frac {\cot (c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx &=\frac {a^2 \operatorname {Subst}\left (\int \frac {1}{x (-a+a x) (a+a x)^{7/2}} \, dx,x,\sec (c+d x)\right )}{d}\\ &=-\frac {1}{5 d (a+a \sec (c+d x))^{5/2}}+\frac {\operatorname {Subst}\left (\int \frac {2 a^2-a^2 x}{x (-a+a x) (a+a x)^{5/2}} \, dx,x,\sec (c+d x)\right )}{2 a d}\\ &=-\frac {1}{5 d (a+a \sec (c+d x))^{5/2}}-\frac {1}{2 a d (a+a \sec (c+d x))^{3/2}}-\frac {\operatorname {Subst}\left (\int \frac {-6 a^4+\frac {9 a^4 x}{2}}{x (-a+a x) (a+a x)^{3/2}} \, dx,x,\sec (c+d x)\right )}{6 a^4 d}\\ &=-\frac {1}{5 d (a+a \sec (c+d x))^{5/2}}-\frac {1}{2 a d (a+a \sec (c+d x))^{3/2}}-\frac {7}{4 a^2 d \sqrt {a+a \sec (c+d x)}}+\frac {\operatorname {Subst}\left (\int \frac {6 a^6-\frac {21 a^6 x}{4}}{x (-a+a x) \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{6 a^7 d}\\ &=-\frac {1}{5 d (a+a \sec (c+d x))^{5/2}}-\frac {1}{2 a d (a+a \sec (c+d x))^{3/2}}-\frac {7}{4 a^2 d \sqrt {a+a \sec (c+d x)}}-\frac {\operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{a^2 d}+\frac {\operatorname {Subst}\left (\int \frac {1}{(-a+a x) \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{8 a d}\\ &=-\frac {1}{5 d (a+a \sec (c+d x))^{5/2}}-\frac {1}{2 a d (a+a \sec (c+d x))^{3/2}}-\frac {7}{4 a^2 d \sqrt {a+a \sec (c+d x)}}-\frac {2 \operatorname {Subst}\left (\int \frac {1}{-1+\frac {x^2}{a}} \, dx,x,\sqrt {a+a \sec (c+d x)}\right )}{a^3 d}+\frac {\operatorname {Subst}\left (\int \frac {1}{-2 a+x^2} \, dx,x,\sqrt {a+a \sec (c+d x)}\right )}{4 a^2 d}\\ &=\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {a}}\right )}{a^{5/2} d}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{4 \sqrt {2} a^{5/2} d}-\frac {1}{5 d (a+a \sec (c+d x))^{5/2}}-\frac {1}{2 a d (a+a \sec (c+d x))^{3/2}}-\frac {7}{4 a^2 d \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.07, size = 60, normalized size = 0.42 \[ \frac {\, _2F_1\left (-\frac {5}{2},1;-\frac {3}{2};\frac {1}{2} (\sec (c+d x)+1)\right )-2 \, _2F_1\left (-\frac {5}{2},1;-\frac {3}{2};\sec (c+d x)+1\right )}{5 d (a (\sec (c+d x)+1))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(Hypergeometric2F1[-5/2, 1, -3/2, (1 + Sec[c + d*x])/2] - 2*Hypergeometric2F1[-5/2, 1, -3/2, 1 + Sec[c + d*x]]
)/(5*d*(a*(1 + Sec[c + d*x]))^(5/2))

________________________________________________________________________________________

fricas [B]  time = 0.64, size = 573, normalized size = 3.98 \[ \left [\frac {5 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (-\frac {2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) - 1}\right ) + 40 \, {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (-8 \, a \cos \left (d x + c\right )^{2} - 4 \, {\left (2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} - 8 \, a \cos \left (d x + c\right ) - a\right ) - 4 \, {\left (49 \, \cos \left (d x + c\right )^{3} + 80 \, \cos \left (d x + c\right )^{2} + 35 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{80 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, \frac {5 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{a \cos \left (d x + c\right ) + a}\right ) - 40 \, {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{2 \, a \cos \left (d x + c\right ) + a}\right ) - 2 \, {\left (49 \, \cos \left (d x + c\right )^{3} + 80 \, \cos \left (d x + c\right )^{2} + 35 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{40 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/80*(5*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*log(-(2*sqrt(2)*sqrt(a)*sqrt
((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c) - 3*a*cos(d*x + c) - a)/(cos(d*x + c) - 1)) + 40*(cos(d*x + c
)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*log(-8*a*cos(d*x + c)^2 - 4*(2*cos(d*x + c)^2 + cos(d*x +
 c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)) - 8*a*cos(d*x + c) - a) - 4*(49*cos(d*x + c)^3 + 80*cos(d
*x + c)^2 + 35*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x
+ c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d), 1/40*(5*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) +
1)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(a*cos(d*x + c) + a))
 - 40*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c)
 + a)/cos(d*x + c))*cos(d*x + c)/(2*a*cos(d*x + c) + a)) - 2*(49*cos(d*x + c)^3 + 80*cos(d*x + c)^2 + 35*cos(d
*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos
(d*x + c) + a^3*d)]

________________________________________________________________________________________

giac [A]  time = 4.29, size = 227, normalized size = 1.58 \[ -\frac {\frac {5 \, \sqrt {2} \arctan \left (\frac {\sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}{\sqrt {-a}}\right )}{\sqrt {-a} a^{2} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} - \frac {80 \, \arctan \left (\frac {\sqrt {2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}{2 \, \sqrt {-a}}\right )}{\sqrt {-a} a^{2} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} - \frac {\sqrt {2} {\left ({\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} a^{20} + 5 \, {\left (-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {3}{2}} a^{21} + 35 \, \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} a^{22}\right )}}{a^{25} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}}{40 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

-1/40*(5*sqrt(2)*arctan(sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/(sqrt(-a)*a^2*sgn(tan(1/2*d*x + 1/2*c)^2
 - 1)) - 80*arctan(1/2*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/(sqrt(-a)*a^2*sgn(tan(1/2*d*x + 1
/2*c)^2 - 1)) - sqrt(2)*((a*tan(1/2*d*x + 1/2*c)^2 - a)^2*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*a^20 + 5*(-a*tan
(1/2*d*x + 1/2*c)^2 + a)^(3/2)*a^21 + 35*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*a^22)/(a^25*sgn(tan(1/2*d*x + 1/2
*c)^2 - 1)))/d

________________________________________________________________________________________

maple [B]  time = 1.33, size = 496, normalized size = 3.44 \[ \frac {\left (-1+\cos \left (d x +c \right )\right )^{3} \left (40 \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right )+5 \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {1}{\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )+120 \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right ) \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right )+15 \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {1}{\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right ) \left (\cos ^{2}\left (d x +c \right )\right )+120 \cos \left (d x +c \right ) \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right )+98 \left (\cos ^{3}\left (d x +c \right )\right )+15 \cos \left (d x +c \right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {1}{\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )+40 \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right ) \sqrt {2}+160 \left (\cos ^{2}\left (d x +c \right )\right )+5 \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {1}{\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )+70 \cos \left (d x +c \right )\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{40 d \sin \left (d x +c \right )^{6} a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)/(a+a*sec(d*x+c))^(5/2),x)

[Out]

1/40/d*(-1+cos(d*x+c))^3*(40*cos(d*x+c)^3*2^(1/2)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(-2*cos(d*x+
c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))+5*cos(d*x+c)^3*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/(-2*cos(d*x+c)/
(1+cos(d*x+c)))^(1/2))+120*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2
)*2^(1/2))*2^(1/2)*cos(d*x+c)^2+15*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/(-2*cos(d*x+c)/(1+cos(d*x+c))
)^(1/2))*cos(d*x+c)^2+120*cos(d*x+c)*2^(1/2)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(-2*cos(d*x+c)/(1
+cos(d*x+c)))^(1/2)*2^(1/2))+98*cos(d*x+c)^3+15*cos(d*x+c)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/(-2*c
os(d*x+c)/(1+cos(d*x+c)))^(1/2))+40*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+
c)))^(1/2)*2^(1/2))*2^(1/2)+160*cos(d*x+c)^2+5*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/(-2*cos(d*x+c)/(1
+cos(d*x+c)))^(1/2))+70*cos(d*x+c))*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)/sin(d*x+c)^6/a^3

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cot \left (d x + c\right )}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(cot(d*x + c)/(a*sec(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\mathrm {cot}\left (c+d\,x\right )}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)/(a + a/cos(c + d*x))^(5/2),x)

[Out]

int(cot(c + d*x)/(a + a/cos(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cot {\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+a*sec(d*x+c))**(5/2),x)

[Out]

Integral(cot(c + d*x)/(a*(sec(c + d*x) + 1))**(5/2), x)

________________________________________________________________________________________