3.288 \(\int \frac {\tan ^5(c+d x)}{a+b \sec (c+d x)} \, dx\)

Optimal. Leaf size=108 \[ -\frac {\left (a^2-b^2\right )^2 \log (a+b \sec (c+d x))}{a b^4 d}+\frac {\left (a^2-2 b^2\right ) \sec (c+d x)}{b^3 d}-\frac {a \sec ^2(c+d x)}{2 b^2 d}-\frac {\log (\cos (c+d x))}{a d}+\frac {\sec ^3(c+d x)}{3 b d} \]

[Out]

-ln(cos(d*x+c))/a/d-(a^2-b^2)^2*ln(a+b*sec(d*x+c))/a/b^4/d+(a^2-2*b^2)*sec(d*x+c)/b^3/d-1/2*a*sec(d*x+c)^2/b^2
/d+1/3*sec(d*x+c)^3/b/d

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 108, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {3885, 894} \[ \frac {\left (a^2-2 b^2\right ) \sec (c+d x)}{b^3 d}-\frac {\left (a^2-b^2\right )^2 \log (a+b \sec (c+d x))}{a b^4 d}-\frac {a \sec ^2(c+d x)}{2 b^2 d}-\frac {\log (\cos (c+d x))}{a d}+\frac {\sec ^3(c+d x)}{3 b d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^5/(a + b*Sec[c + d*x]),x]

[Out]

-(Log[Cos[c + d*x]]/(a*d)) - ((a^2 - b^2)^2*Log[a + b*Sec[c + d*x]])/(a*b^4*d) + ((a^2 - 2*b^2)*Sec[c + d*x])/
(b^3*d) - (a*Sec[c + d*x]^2)/(2*b^2*d) + Sec[c + d*x]^3/(3*b*d)

Rule 894

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIn
tegrand[(d + e*x)^m*(f + g*x)^n*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] &&
NeQ[c*d^2 + a*e^2, 0] && IntegerQ[p] && ((EqQ[p, 1] && IntegersQ[m, n]) || (ILtQ[m, 0] && ILtQ[n, 0]))

Rule 3885

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Dist[(-1)^((m - 1
)/2)/(d*b^(m - 1)), Subst[Int[((b^2 - x^2)^((m - 1)/2)*(a + x)^n)/x, x], x, b*Csc[c + d*x]], x] /; FreeQ[{a, b
, c, d, n}, x] && IntegerQ[(m - 1)/2] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\tan ^5(c+d x)}{a+b \sec (c+d x)} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\left (b^2-x^2\right )^2}{x (a+x)} \, dx,x,b \sec (c+d x)\right )}{b^4 d}\\ &=\frac {\operatorname {Subst}\left (\int \left (a^2 \left (1-\frac {2 b^2}{a^2}\right )+\frac {b^4}{a x}-a x+x^2-\frac {\left (a^2-b^2\right )^2}{a (a+x)}\right ) \, dx,x,b \sec (c+d x)\right )}{b^4 d}\\ &=-\frac {\log (\cos (c+d x))}{a d}-\frac {\left (a^2-b^2\right )^2 \log (a+b \sec (c+d x))}{a b^4 d}+\frac {\left (a^2-2 b^2\right ) \sec (c+d x)}{b^3 d}-\frac {a \sec ^2(c+d x)}{2 b^2 d}+\frac {\sec ^3(c+d x)}{3 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.40, size = 108, normalized size = 1.00 \[ \frac {-3 a^2 b^2 \sec ^2(c+d x)+6 a b \left (a^2-2 b^2\right ) \sec (c+d x)+6 a^2 \left (a^2-2 b^2\right ) \log (\cos (c+d x))-6 \left (a^2-b^2\right )^2 \log (a \cos (c+d x)+b)+2 a b^3 \sec ^3(c+d x)}{6 a b^4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^5/(a + b*Sec[c + d*x]),x]

[Out]

(6*a^2*(a^2 - 2*b^2)*Log[Cos[c + d*x]] - 6*(a^2 - b^2)^2*Log[b + a*Cos[c + d*x]] + 6*a*b*(a^2 - 2*b^2)*Sec[c +
 d*x] - 3*a^2*b^2*Sec[c + d*x]^2 + 2*a*b^3*Sec[c + d*x]^3)/(6*a*b^4*d)

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 129, normalized size = 1.19 \[ -\frac {3 \, a^{2} b^{2} \cos \left (d x + c\right ) + 6 \, {\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \cos \left (d x + c\right )^{3} \log \left (a \cos \left (d x + c\right ) + b\right ) - 6 \, {\left (a^{4} - 2 \, a^{2} b^{2}\right )} \cos \left (d x + c\right )^{3} \log \left (-\cos \left (d x + c\right )\right ) - 2 \, a b^{3} - 6 \, {\left (a^{3} b - 2 \, a b^{3}\right )} \cos \left (d x + c\right )^{2}}{6 \, a b^{4} d \cos \left (d x + c\right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^5/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

-1/6*(3*a^2*b^2*cos(d*x + c) + 6*(a^4 - 2*a^2*b^2 + b^4)*cos(d*x + c)^3*log(a*cos(d*x + c) + b) - 6*(a^4 - 2*a
^2*b^2)*cos(d*x + c)^3*log(-cos(d*x + c)) - 2*a*b^3 - 6*(a^3*b - 2*a*b^3)*cos(d*x + c)^2)/(a*b^4*d*cos(d*x + c
)^3)

________________________________________________________________________________________

giac [B]  time = 3.14, size = 560, normalized size = 5.19 \[ -\frac {\frac {3 \, {\left (a^{3} - 2 \, a b^{2}\right )} \log \left ({\left | a + b - \frac {2 \, b {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} - \frac {a {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {b {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} \right |}\right )}{b^{4}} - \frac {6 \, {\left (a^{3} - 2 \, a b^{2}\right )} \log \left ({\left | -\frac {\cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right ) + 1} - 1 \right |}\right )}{b^{4}} - \frac {3 \, {\left (a^{4} - 2 \, a^{2} b^{2} + 2 \, b^{4}\right )} \log \left (\frac {{\left | 2 \, b + \frac {2 \, a {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} - \frac {2 \, b {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} - 2 \, {\left | a \right |} \right |}}{{\left | 2 \, b + \frac {2 \, a {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} - \frac {2 \, b {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} + 2 \, {\left | a \right |} \right |}}\right )}{b^{4} {\left | a \right |}} + \frac {11 \, a^{3} - 12 \, a^{2} b - 22 \, a b^{2} + 20 \, b^{3} + \frac {33 \, a^{3} {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} - \frac {24 \, a^{2} b {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} - \frac {78 \, a b^{2} {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} + \frac {48 \, b^{3} {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} + \frac {33 \, a^{3} {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {12 \, a^{2} b {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {78 \, a b^{2} {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {12 \, b^{3} {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {11 \, a^{3} {\left (\cos \left (d x + c\right ) - 1\right )}^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {22 \, a b^{2} {\left (\cos \left (d x + c\right ) - 1\right )}^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{b^{4} {\left (\frac {\cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right ) + 1} + 1\right )}^{3}}}{6 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^5/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

-1/6*(3*(a^3 - 2*a*b^2)*log(abs(a + b - 2*b*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) - a*(cos(d*x + c) - 1)^2/(co
s(d*x + c) + 1)^2 + b*(cos(d*x + c) - 1)^2/(cos(d*x + c) + 1)^2))/b^4 - 6*(a^3 - 2*a*b^2)*log(abs(-(cos(d*x +
c) - 1)/(cos(d*x + c) + 1) - 1))/b^4 - 3*(a^4 - 2*a^2*b^2 + 2*b^4)*log(abs(2*b + 2*a*(cos(d*x + c) - 1)/(cos(d
*x + c) + 1) - 2*b*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) - 2*abs(a))/abs(2*b + 2*a*(cos(d*x + c) - 1)/(cos(d*x
 + c) + 1) - 2*b*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) + 2*abs(a)))/(b^4*abs(a)) + (11*a^3 - 12*a^2*b - 22*a*b
^2 + 20*b^3 + 33*a^3*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) - 24*a^2*b*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) -
78*a*b^2*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) + 48*b^3*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) + 33*a^3*(cos(d*
x + c) - 1)^2/(cos(d*x + c) + 1)^2 - 12*a^2*b*(cos(d*x + c) - 1)^2/(cos(d*x + c) + 1)^2 - 78*a*b^2*(cos(d*x +
c) - 1)^2/(cos(d*x + c) + 1)^2 + 12*b^3*(cos(d*x + c) - 1)^2/(cos(d*x + c) + 1)^2 + 11*a^3*(cos(d*x + c) - 1)^
3/(cos(d*x + c) + 1)^3 - 22*a*b^2*(cos(d*x + c) - 1)^3/(cos(d*x + c) + 1)^3)/(b^4*((cos(d*x + c) - 1)/(cos(d*x
 + c) + 1) + 1)^3))/d

________________________________________________________________________________________

maple [A]  time = 0.44, size = 163, normalized size = 1.51 \[ -\frac {a^{3} \ln \left (b +a \cos \left (d x +c \right )\right )}{d \,b^{4}}+\frac {2 a \ln \left (b +a \cos \left (d x +c \right )\right )}{d \,b^{2}}-\frac {\ln \left (b +a \cos \left (d x +c \right )\right )}{d a}-\frac {a}{2 d \,b^{2} \cos \left (d x +c \right )^{2}}+\frac {a^{2}}{d \,b^{3} \cos \left (d x +c \right )}-\frac {2}{d b \cos \left (d x +c \right )}+\frac {a^{3} \ln \left (\cos \left (d x +c \right )\right )}{d \,b^{4}}-\frac {2 a \ln \left (\cos \left (d x +c \right )\right )}{d \,b^{2}}+\frac {1}{3 d b \cos \left (d x +c \right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^5/(a+b*sec(d*x+c)),x)

[Out]

-1/d/b^4*a^3*ln(b+a*cos(d*x+c))+2/d/b^2*a*ln(b+a*cos(d*x+c))-1/d/a*ln(b+a*cos(d*x+c))-1/2/d/b^2*a/cos(d*x+c)^2
+1/d/b^3/cos(d*x+c)*a^2-2/d/b/cos(d*x+c)+1/d/b^4*a^3*ln(cos(d*x+c))-2/d/b^2*a*ln(cos(d*x+c))+1/3/d/b/cos(d*x+c
)^3

________________________________________________________________________________________

maxima [A]  time = 0.40, size = 110, normalized size = 1.02 \[ \frac {\frac {6 \, {\left (a^{3} - 2 \, a b^{2}\right )} \log \left (\cos \left (d x + c\right )\right )}{b^{4}} - \frac {6 \, {\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \log \left (a \cos \left (d x + c\right ) + b\right )}{a b^{4}} - \frac {3 \, a b \cos \left (d x + c\right ) - 6 \, {\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, b^{2}}{b^{3} \cos \left (d x + c\right )^{3}}}{6 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^5/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

1/6*(6*(a^3 - 2*a*b^2)*log(cos(d*x + c))/b^4 - 6*(a^4 - 2*a^2*b^2 + b^4)*log(a*cos(d*x + c) + b)/(a*b^4) - (3*
a*b*cos(d*x + c) - 6*(a^2 - 2*b^2)*cos(d*x + c)^2 - 2*b^2)/(b^3*cos(d*x + c)^3))/d

________________________________________________________________________________________

mupad [B]  time = 1.88, size = 227, normalized size = 2.10 \[ \frac {\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}{a\,d}-\frac {\frac {2\,\left (3\,a^2-5\,b^2\right )}{3\,b^3}-\frac {2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (2\,a^2+a\,b-4\,b^2\right )}{b^3}+\frac {2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (a^2+a\,b-b^2\right )}{b^3}}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )}+\frac {a\,\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )\,\left (a^2-2\,b^2\right )}{b^4\,d}-\frac {\ln \left (a+b-a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\right )\,{\left (a^2-b^2\right )}^2}{a\,b^4\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^5/(a + b/cos(c + d*x)),x)

[Out]

log(tan(c/2 + (d*x)/2)^2 + 1)/(a*d) - ((2*(3*a^2 - 5*b^2))/(3*b^3) - (2*tan(c/2 + (d*x)/2)^2*(a*b + 2*a^2 - 4*
b^2))/b^3 + (2*tan(c/2 + (d*x)/2)^4*(a*b + a^2 - b^2))/b^3)/(d*(3*tan(c/2 + (d*x)/2)^2 - 3*tan(c/2 + (d*x)/2)^
4 + tan(c/2 + (d*x)/2)^6 - 1)) + (a*log(tan(c/2 + (d*x)/2)^2 - 1)*(a^2 - 2*b^2))/(b^4*d) - (log(a + b - a*tan(
c/2 + (d*x)/2)^2 + b*tan(c/2 + (d*x)/2)^2)*(a^2 - b^2)^2)/(a*b^4*d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan ^{5}{\left (c + d x \right )}}{a + b \sec {\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**5/(a+b*sec(d*x+c)),x)

[Out]

Integral(tan(c + d*x)**5/(a + b*sec(c + d*x)), x)

________________________________________________________________________________________