3.332 \(\int \frac {\tan ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=310 \[ -\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b d}+\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a d} \]

[Out]

-2*(a-b)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*
x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d-2*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(
1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b/d+2*cot
(d*x+c)*EllipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c
))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.25, antiderivative size = 310, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3894, 4059, 3921, 3784, 3832, 4004} \[ -\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b d}+\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^2/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(-2*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*
Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*d) - (2*Sqrt[a + b]*Cot[c +
 d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a
+ b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d) + (2*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSi
n[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 +
Sec[c + d*x]))/(a - b))])/(a*d)

Rule 3784

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(2*Rt[a + b, 2]*Sqrt[(b*(1 - Csc[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Csc[c + d*x]))/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a
+ b, 2]], (a + b)/(a - b)])/(a*d*Cot[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3894

Int[cot[(c_.) + (d_.)*(x_)]^2*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[(-1 + Csc[c + d*x]
^2)*(a + b*Csc[c + d*x])^n, x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 - b^2, 0]

Rule 3921

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4059

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Int[(A
- C*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[(Csc[e + f*x]*(1 + Csc[e + f*x]))/Sqrt[a + b*Csc[
e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\tan ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx &=\int \frac {-1+\sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\int \frac {-1-\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx+\int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^2 d}-\int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx-\int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^2 d}-\frac {2 \sqrt {a+b} \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b d}+\frac {2 \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {\$Aborted} \]

Verification is Not applicable to the result.

[In]

Integrate[Tan[c + d*x]^2/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

$Aborted

________________________________________________________________________________________

fricas [F]  time = 22.98, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\tan \left (d x + c\right )^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(tan(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan \left (d x + c\right )^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(tan(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

maple [B]  time = 1.39, size = 823, normalized size = 2.65 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x)

[Out]

-2/d*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(1+cos(d*x+c))^2*(-1+cos(d*x+c))^2*(2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/
2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b*s
in(d*x+c)*cos(d*x+c)-cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2
)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a-cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c))
)^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(
a+b))^(1/2))*b-2*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*si
n(d*x+c)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*b+2*EllipticF((-1+cos(d*x+c))/sin(d*x+c
),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x
+c)*b-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*EllipticE((-1
+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+
c))/(a+b))^(1/2)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b-2*(cos(d*x+c)/(1+cos(d
*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-
1,((a-b)/(a+b))^(1/2))*b+a*cos(d*x+c)^2-a*cos(d*x+c)+b*cos(d*x+c)-b)/sin(d*x+c)^5/(b+a*cos(d*x+c))/b

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan \left (d x + c\right )^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(tan(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\mathrm {tan}\left (c+d\,x\right )}^2}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^2/(a + b/cos(c + d*x))^(1/2),x)

[Out]

int(tan(c + d*x)^2/(a + b/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan ^{2}{\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**2/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral(tan(c + d*x)**2/sqrt(a + b*sec(c + d*x)), x)

________________________________________________________________________________________